File size: 40,372 Bytes
5963672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:160
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Priya Softweb has specific guidelines for managing the arrival
    of international shipments. To ensure smooth customs clearance, the company requires
    an authorization letter from the client, written on their company letterhead.
    This letter must clearly state that the shipment is "Not for commercial purposes"
    to prevent the application of duty charges by the customs office. All international
    shipments should be addressed to Keyur Patel at Priya Softweb Solutions Pvt. Ltd.,
    with the company's full address and contact information clearly indicated. Employees
    are advised to contact the HR department for the correct format of the authorization
    letter and to inform Keyur Patel about the expected arrival of such shipments.
    These procedures streamline the handling of international shipments and help avoid
    potential customs-related delays or complications.
  sentences:
  - Female employees at Priya Softweb are allowed to wear:- Formal trousers/jeans
    and shirts- Sarees- Formal skirts- T-shirts with collars- Chudidars & Kurtis-
    Salwar SuitsHowever, they are not allowed to wear:- Round neck, deep neck, cold
    shoulder, and fancy T-shirts- Low waist jeans, short T-shirts, and short shirts-
    Transparent wear- Wear with deep-cut sleeves- Capris- Slippers- Visible tattoos
    & piercingsPriya Softweb emphasizes a professional appearance for its employees
    while providing flexibility in choosing appropriate attire within the defined
    guidelines.
  - Priya Softweb has specific guidelines for managing the arrival of international
    shipments. To ensure smooth customs clearance, the company requires an authorization
    letter from the client, written on their company letterhead. This letter must
    clearly state that the shipment is "Not for commercial purposes" to prevent the
    application of duty charges by the customs office. All international shipments
    should be addressed to Keyur Patel at Priya Softweb Solutions Pvt. Ltd., with
    the company's full address and contact information clearly indicated. Employees
    are advised to contact the HR department for the correct format of the authorization
    letter and to inform Keyur Patel about the expected arrival of such shipments.
    These procedures streamline the handling of international shipments and help avoid
    potential customs-related delays or complications.
  - Priya Softweb has a structured onboarding process for new employees. Upon joining,
    new hires undergo an induction program conducted by the HR department. This program
    introduces them to the company's culture, values, processes, and policies, ensuring
    they are well-acquainted with the work environment and expectations. HR also facilitates
    introductions to the relevant department and sends out a company-wide email announcing
    the new employee's arrival. Additionally, new employees are required to complete
    quarterly Ethics & Compliance training to familiarize themselves with the company's
    ethical standards and compliance requirements. This comprehensive onboarding approach
    helps new employees integrate seamlessly into the company and quickly become productive
    members of the team.
- source_sentence: The sanctioning and approving authority for Casual Leave, Sick
    Leave, and Privilege Leave at Priya Softweb is the Leader/Manager.
  sentences:
  - Even if an employee utilizes the 'Hybrid' Work From Home model for only half a
    day, a full count is deducted from their monthly allowance of 4 WFH days. This
    clarifies that any utilization of the 'Hybrid' model, regardless of the duration,
    is considered a full WFH day and counts towards the monthly limit.
  - The sanctioning and approving authority for Casual Leave, Sick Leave, and Privilege
    Leave at Priya Softweb is the Leader/Manager.
  - To be eligible for gratuity at Priya Softweb, an employee must have completed
    a minimum of 5 continuous years of service. This ensures that only long-term employees
    are entitled to this benefit.
- source_sentence: 'Priya Softweb utilizes Employee Agreements/Bonds as a mechanism
    to retain talent within the company. These agreements are implemented in various
    situations, including: * **Retention:** When the company seeks to retain valuable
    employees who have resigned, a 15-month bond may be applied based on the company''s
    requirements. * **Freshers:** New employees with 0 to 1 year of experience are
    generally subject to an 18-month bond. * **Rejoining:** When former employees
    are rehired, a 15-month bond is typically implemented. These bond periods vary
    based on the specific circumstances and aim to ensure a certain level of commitment
    from employees, especially in roles that require significant investment in training
    and development.'
  sentences:
  - To claim gratuity, employees must submit an application form to the Accounts department.
    This formal process ensures proper documentation and timely processing of the
    gratuity payment.
  - Priya Softweb acknowledges the efforts of employees who work late hours. Employees
    working more than 11 hours on weekdays are eligible for reimbursement of up to
    Rs. 250/- for their dinner expenses. However, this reimbursement is subject to
    approval from their Department Head. This policy recognizes the extra effort put
    in by employees working extended hours and provides some financial compensation
    for their meals.
  - 'Priya Softweb utilizes Employee Agreements/Bonds as a mechanism to retain talent
    within the company. These agreements are implemented in various situations, including:
    * **Retention:** When the company seeks to retain valuable employees who have
    resigned, a 15-month bond may be applied based on the company''s requirements.
    * **Freshers:** New employees with 0 to 1 year of experience are generally subject
    to an 18-month bond. * **Rejoining:** When former employees are rehired, a 15-month
    bond is typically implemented. These bond periods vary based on the specific circumstances
    and aim to ensure a certain level of commitment from employees, especially in
    roles that require significant investment in training and development.'
- source_sentence: Chewing tobacco, gutka, gum, or smoking within the office premises
    is strictly prohibited at Priya Softweb. Bringing such substances inside the office
    will lead to penalties and potentially harsh decisions from management. This strict
    policy reflects Priya Softweb's commitment to a healthy and clean work environment.
  sentences:
  - Chewing tobacco, gutka, gum, or smoking within the office premises is strictly
    prohibited at Priya Softweb. Bringing such substances inside the office will lead
    to penalties and potentially harsh decisions from management. This strict policy
    reflects Priya Softweb's commitment to a healthy and clean work environment.
  - In situations of 'Bad Weather', the HR department at Priya Softweb will enable
    the 'Work From Home' option within the OMS system based on the severity of the
    weather and potential safety risks for employees commuting to the office. This
    proactive approach prioritizes employee safety and allows for flexible work arrangements
    during adverse weather events.
  - Priya Softweb employees are entitled to 5 Casual Leaves (CL) per year.
- source_sentence: Priya Softweb prioritizes the health and wellness of its employees.
    The company strongly prohibits chewing tobacco, gutka, gum, or smoking within
    the office premises. Penalties and harsh decisions from management await anyone
    found bringing such substances into the office. Furthermore, carrying food to
    the desk is not permitted. Employees are encouraged to use the terrace dining
    facility for lunch, snacks, and dinner. Priya Softweb also emphasizes cleanliness
    and orderliness in the workspace. Employees are responsible for maintaining their
    designated work areas, keeping them clean, organized, and free from unnecessary
    items. Spitting gutka, gum, or tobacco in the washrooms is strictly prohibited.
    These policies contribute to a healthier and more pleasant work environment for
    everyone.
  sentences:
  - Priya Softweb prioritizes the health and wellness of its employees. The company
    strongly prohibits chewing tobacco, gutka, gum, or smoking within the office premises.
    Penalties and harsh decisions from management await anyone found bringing such
    substances into the office. Furthermore, carrying food to the desk is not permitted.
    Employees are encouraged to use the terrace dining facility for lunch, snacks,
    and dinner. Priya Softweb also emphasizes cleanliness and orderliness in the workspace.
    Employees are responsible for maintaining their designated work areas, keeping
    them clean, organized, and free from unnecessary items. Spitting gutka, gum, or
    tobacco in the washrooms is strictly prohibited. These policies contribute to
    a healthier and more pleasant work environment for everyone.
  - The Performance Appraisal at Priya Softweb is solely based on the employee's performance
    evaluation. The evaluation score is compiled by the Team Leader/Project Manager,
    who also gives the final rating to the team member. Detailed recommendations are
    provided by the TL/PM, and increment or promotion is granted accordingly. This
    process ensures that performance is the primary factor driving salary revisions
    and promotions.
  - Priya Softweb actively promotes diversity in its hiring practices. The company
    focuses on recruiting individuals from a wide range of backgrounds, including
    different races, ethnicities, religions, political beliefs, education levels,
    socio-economic backgrounds, geographical locations, languages, and cultures. This
    commitment to diversity enriches the company culture and brings in a variety of
    perspectives and experiences.
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 1.0
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 1.0
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.33333333333333326
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.20000000000000004
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.10000000000000002
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 1.0
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 1.0
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 1.0
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 1.0
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 1.0
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 1.0
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.33333333333333326
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.20000000000000004
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.10000000000000002
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 1.0
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 1.0
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 1.0
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 1.0
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 1.0
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 1.0
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.33333333333333326
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.20000000000000004
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.10000000000000002
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 1.0
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 1.0
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 1.0
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 1.0
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 1.0
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 1.0
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.33333333333333326
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.20000000000000004
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.10000000000000002
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 1.0
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 1.0
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 1.0
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 1.0
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 1.0
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 1.0
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.33333333333333326
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.20000000000000004
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.10000000000000002
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 1.0
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 1.0
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 1.0
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 1.0
      name: Cosine Map@100
---

# SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("kr-manish/fine-tune-embedding-bge-base-HrPolicy_vfinal")
# Run inference
sentences = [
    'Priya Softweb prioritizes the health and wellness of its employees. The company strongly prohibits chewing tobacco, gutka, gum, or smoking within the office premises. Penalties and harsh decisions from management await anyone found bringing such substances into the office. Furthermore, carrying food to the desk is not permitted. Employees are encouraged to use the terrace dining facility for lunch, snacks, and dinner. Priya Softweb also emphasizes cleanliness and orderliness in the workspace. Employees are responsible for maintaining their designated work areas, keeping them clean, organized, and free from unnecessary items. Spitting gutka, gum, or tobacco in the washrooms is strictly prohibited. These policies contribute to a healthier and more pleasant work environment for everyone.',
    'Priya Softweb prioritizes the health and wellness of its employees. The company strongly prohibits chewing tobacco, gutka, gum, or smoking within the office premises. Penalties and harsh decisions from management await anyone found bringing such substances into the office. Furthermore, carrying food to the desk is not permitted. Employees are encouraged to use the terrace dining facility for lunch, snacks, and dinner. Priya Softweb also emphasizes cleanliness and orderliness in the workspace. Employees are responsible for maintaining their designated work areas, keeping them clean, organized, and free from unnecessary items. Spitting gutka, gum, or tobacco in the washrooms is strictly prohibited. These policies contribute to a healthier and more pleasant work environment for everyone.',
    "The Performance Appraisal at Priya Softweb is solely based on the employee's performance evaluation. The evaluation score is compiled by the Team Leader/Project Manager, who also gives the final rating to the team member. Detailed recommendations are provided by the TL/PM, and increment or promotion is granted accordingly. This process ensures that performance is the primary factor driving salary revisions and promotions.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value   |
|:--------------------|:--------|
| cosine_accuracy@1   | 1.0     |
| cosine_accuracy@3   | 1.0     |
| cosine_accuracy@5   | 1.0     |
| cosine_accuracy@10  | 1.0     |
| cosine_precision@1  | 1.0     |
| cosine_precision@3  | 0.3333  |
| cosine_precision@5  | 0.2     |
| cosine_precision@10 | 0.1     |
| cosine_recall@1     | 1.0     |
| cosine_recall@3     | 1.0     |
| cosine_recall@5     | 1.0     |
| cosine_recall@10    | 1.0     |
| cosine_ndcg@10      | 1.0     |
| cosine_mrr@10       | 1.0     |
| **cosine_map@100**  | **1.0** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value   |
|:--------------------|:--------|
| cosine_accuracy@1   | 1.0     |
| cosine_accuracy@3   | 1.0     |
| cosine_accuracy@5   | 1.0     |
| cosine_accuracy@10  | 1.0     |
| cosine_precision@1  | 1.0     |
| cosine_precision@3  | 0.3333  |
| cosine_precision@5  | 0.2     |
| cosine_precision@10 | 0.1     |
| cosine_recall@1     | 1.0     |
| cosine_recall@3     | 1.0     |
| cosine_recall@5     | 1.0     |
| cosine_recall@10    | 1.0     |
| cosine_ndcg@10      | 1.0     |
| cosine_mrr@10       | 1.0     |
| **cosine_map@100**  | **1.0** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value   |
|:--------------------|:--------|
| cosine_accuracy@1   | 1.0     |
| cosine_accuracy@3   | 1.0     |
| cosine_accuracy@5   | 1.0     |
| cosine_accuracy@10  | 1.0     |
| cosine_precision@1  | 1.0     |
| cosine_precision@3  | 0.3333  |
| cosine_precision@5  | 0.2     |
| cosine_precision@10 | 0.1     |
| cosine_recall@1     | 1.0     |
| cosine_recall@3     | 1.0     |
| cosine_recall@5     | 1.0     |
| cosine_recall@10    | 1.0     |
| cosine_ndcg@10      | 1.0     |
| cosine_mrr@10       | 1.0     |
| **cosine_map@100**  | **1.0** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value   |
|:--------------------|:--------|
| cosine_accuracy@1   | 1.0     |
| cosine_accuracy@3   | 1.0     |
| cosine_accuracy@5   | 1.0     |
| cosine_accuracy@10  | 1.0     |
| cosine_precision@1  | 1.0     |
| cosine_precision@3  | 0.3333  |
| cosine_precision@5  | 0.2     |
| cosine_precision@10 | 0.1     |
| cosine_recall@1     | 1.0     |
| cosine_recall@3     | 1.0     |
| cosine_recall@5     | 1.0     |
| cosine_recall@10    | 1.0     |
| cosine_ndcg@10      | 1.0     |
| cosine_mrr@10       | 1.0     |
| **cosine_map@100**  | **1.0** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value   |
|:--------------------|:--------|
| cosine_accuracy@1   | 1.0     |
| cosine_accuracy@3   | 1.0     |
| cosine_accuracy@5   | 1.0     |
| cosine_accuracy@10  | 1.0     |
| cosine_precision@1  | 1.0     |
| cosine_precision@3  | 0.3333  |
| cosine_precision@5  | 0.2     |
| cosine_precision@10 | 0.1     |
| cosine_recall@1     | 1.0     |
| cosine_recall@3     | 1.0     |
| cosine_recall@5     | 1.0     |
| cosine_recall@10    | 1.0     |
| cosine_ndcg@10      | 1.0     |
| cosine_mrr@10       | 1.0     |
| **cosine_map@100**  | **1.0** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 160 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                            | anchor                                                                              |
  |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                              |
  | details | <ul><li>min: 16 tokens</li><li>mean: 90.76 tokens</li><li>max: 380 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 90.76 tokens</li><li>max: 380 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                        | anchor                                                                                                                                                                                                                                                                                                                                                                                                                                          |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The general timings for the Marketing team vary: BD works from 1:00 PM to 10:00 PM or 3:00 PM to 12:00 AM, while BA/SEO works from 11:00 AM to 8:00 PM.</code>                                                                                                                                                                                                                                                                            | <code>The general timings for the Marketing team vary: BD works from 1:00 PM to 10:00 PM or 3:00 PM to 12:00 AM, while BA/SEO works from 11:00 AM to 8:00 PM.</code>                                                                                                                                                                                                                                                                            |
  | <code>Priya Softweb acknowledges the efforts of employees who work late hours. Employees working more than 11 hours on weekdays are eligible for reimbursement of up to Rs. 250/- for their dinner expenses. However, this reimbursement is subject to approval from their Department Head. This policy recognizes the extra effort put in by employees working extended hours and provides some financial compensation for their meals.</code> | <code>Priya Softweb acknowledges the efforts of employees who work late hours. Employees working more than 11 hours on weekdays are eligible for reimbursement of up to Rs. 250/- for their dinner expenses. However, this reimbursement is subject to approval from their Department Head. This policy recognizes the extra effort put in by employees working extended hours and provides some financial compensation for their meals.</code> |
  | <code>While Priya Softweb allows employees to keep their cell phones during work hours for emergency purposes, excessive personal mobile phone usage and lengthy calls within the office premises are strictly prohibited. Excessive use may result in disciplinary actions. This policy aims to strike a balance between allowing accessibility for emergencies and maintaining a productive work environment free from distractions.</code>   | <code>While Priya Softweb allows employees to keep their cell phones during work hours for emergency purposes, excessive personal mobile phone usage and lengthy calls within the office premises are strictly prohibited. Excessive use may result in disciplinary actions. This policy aims to strike a balance between allowing accessibility for emergencies and maintaining a productive work environment free from distractions.</code>   |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 3e-05
- `num_train_epochs`: 15
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 3e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 15
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step  | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:-------:|:-----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0       | 0     | -             | 1.0                    | 1.0                    | 1.0                    | 1.0                   | 1.0                    |
| **1.0** | **1** | **-**         | **1.0**                | **1.0**                | **1.0**                | **1.0**               | **1.0**                |
| 2.0     | 3     | -             | 1.0                    | 1.0                    | 1.0                    | 1.0                   | 1.0                    |
| 3.0     | 4     | -             | 1.0                    | 1.0                    | 1.0                    | 1.0                   | 1.0                    |
| 4.0     | 6     | -             | 1.0                    | 1.0                    | 1.0                    | 1.0                   | 1.0                    |
| 5.0     | 8     | -             | 1.0                    | 1.0                    | 1.0                    | 1.0                   | 1.0                    |
| 6.0     | 9     | -             | 1.0                    | 1.0                    | 1.0                    | 1.0                   | 1.0                    |
| 6.4     | 10    | 0.0767        | -                      | -                      | -                      | -                     | -                      |
| 7.0     | 11    | -             | 1.0                    | 1.0                    | 1.0                    | 1.0                   | 1.0                    |
| 8.0     | 12    | -             | 1.0                    | 1.0                    | 1.0                    | 1.0                   | 1.0                    |
| 9.0     | 13    | -             | 1.0                    | 1.0                    | 1.0                    | 1.0                   | 1.0                    |
| 10.0    | 15    | -             | 1.0                    | 1.0                    | 1.0                    | 1.0                   | 1.0                    |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->