--- library_name: peft tags: - trl - sft - generated_from_trainer base_model: NousResearch/Llama-2-7b-chat-hf model-index: - name: results results: [] --- #dataset-used: codeparrot/xlcost-text-to-code #github notebook: https://github.com/manishzed/LLM-Fine-tune/blob/main/Llama_2_7b_chat_fine_tune_text_to_python.ipynb #code ```python #testing and loading model import torch, gc gc.collect() torch.cuda.empty_cache() import numpy as np import pandas as pd import os from tqdm import tqdm import bitsandbytes as bnb import torch import torch.nn as nn import transformers from datasets import Dataset from peft import LoraConfig, PeftConfig from trl import SFTTrainer from transformers import (AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments, pipeline, logging) from sklearn.metrics import (accuracy_score, classification_report, confusion_matrix) from sklearn.model_selection import train_test_split from datasets import load_dataset #testing----1 # Ruta del modelo guardado en el dataset de Kaggle from peft import LoraConfig, PeftModel device_map = {"": 0} PEFT_MODEL = "kr-manish/Llama-2-7b-chat-fine-tune-text-to-python" #model_name = "NousResearch/Llama-2-7b-hf" # Cargar la configuraciĆ³n del modelo config = PeftConfig.from_pretrained(PEFT_MODEL) # Cargar el modelo model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, low_cpu_mem_usage=True, return_dict=True, #quantization_config=bnb_config, device_map="auto", #trust_remote_code=True, torch_dtype=torch.float16, ) # Cargar el tokenizador tokenizer=AutoTokenizer.from_pretrained(config.base_model_name_or_path) tokenizer.pad_token = tokenizer.eos_token # Cargar el modelo PEFT load_model = PeftModel.from_pretrained(model, PEFT_MODEL) input_text ="Program to convert Centimeters to Pixels | Function to convert centimeters to pixels ; Driver Code" prompt_test = input_text pipe_test = pipeline(task="text-generation", model=load_model, tokenizer=tokenizer, max_length =200, #max_new_tokens =25, ) #result_test = pipe_test(prompt_test) #answer_test = result_test[0]['generated_text'] #answer_test #or result = pipe_test(f"[INST] {input_text} [/INST]") print(result[0]['generated_text']) #Program to convert Centimeters to Pixels | Function to convert centimeters to pixels ; Driver Code [/code] def convertCentimetersToPixels ( cm ) : NEW_LINE INDENT pixels = ``` #code # results This model is a fine-tuned version of [NousResearch/Llama-2-7b-chat-hf](https://huggingface.co./NousResearch/Llama-2-7b-chat-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7836 | 1.0 | 463 | 0.7746 | ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2