--- language: - ur license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-small-Urdu results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: ur split: test args: ur metrics: - name: Wer type: wer value: 44.238738913203456 --- # openai/whisper-small-Urdu This model is a fine-tuned version of [Zaid/whisper-small-commonvoice](https://huggingface.co./Zaid/whisper-small-commonvoice) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5881 - Wer: 44.2387 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 40 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5993 | 0.5 | 100 | 0.6257 | 37.9294 | | 0.352 | 1.35 | 200 | 0.5881 | 44.2387 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1