--- language: - as license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: kpriyanshu256/whisper-medium-as-200-32-1e-05-bn model-index: - name: openai/whisper-medium-Assamese results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: as split: test args: as metrics: - type: wer value: 25.6271431149612 name: Wer --- # openai/whisper-medium-Assamese This model is a fine-tuned version of [kpriyanshu256/whisper-medium-as-200-32-1e-05-bn](https://huggingface.co./kpriyanshu256/whisper-medium-as-200-32-1e-05-bn) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2247 - Wer: 25.6271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 40 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0864 | 3.13 | 100 | 0.2247 | 25.6271 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.11.0 - Datasets 2.7.1.dev0 - Tokenizers 0.12.1