File size: 4,197 Bytes
80d6747 10d660a 80d6747 10d660a aa89fea 80d6747 aa89fea 80d6747 10d660a 3b597b8 10d660a 3b597b8 10d660a 80d6747 10d660a 80d6747 aa89fea 80d6747 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
language: ja
tags:
- audio
- automatic-speech-recognition
license: mit
library_name: ctranslate2
---
# Whisper kotoba-whisper-bilingual-v1.0 model for CTranslate2
This repository contains the conversion of [kotoba-tech/kotoba-whisper-bilingual-v1.0](https://huggingface.co./kotoba-tech/kotoba-whisper-bilingual-v1.0)
to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format.
This model can be used in CTranslate2 or projects based on CTranslate2 such as [faster-whisper](https://github.com/systran/faster-whisper).
## Example
Install library and download sample audio.
```shell
pip install faster-whisper
wget https://huggingface.co./datasets/japanese-asr/en_asr.esb_eval/resolve/main/sample.wav -O sample_en.wav
wget https://huggingface.co./datasets/japanese-asr/ja_asr.jsut_basic5000/resolve/main/sample.flac -O sample_ja.flac
```
Inference with the kotoba-whisper-bilingual-v1.0-faster.
```python
from faster_whisper import WhisperModel
model = WhisperModel("kotoba-tech/kotoba-whisper-bilingual-v1.0-faster")
# Japanese ASR
segments, info = model.transcribe("sample_ja.flac", language="ja", task="transcribe", condition_on_previous_text=False)
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
# English ASR
segments, info = model.transcribe("sample_en.wav", language="en", task="transcribe", chunk_length=15, condition_on_previous_text=False)
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
# Japanese (speech) to English (text) Translation
segments, info = model.transcribe("sample_ja.flac", language="en", task="translate", chunk_length=15, condition_on_previous_text=False)
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
# English (speech) to Japanese (text) Translation
segments, info = model.transcribe("sample_en.wav", language="ja", task="translate", chunk_length=15, condition_on_previous_text=False)
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
```
### Benchmark
We measure the inference speed of different kotoba-whisper-v2.0 implementations with four different Japanese speech audio on MacBook Pro with the following spec:
- Apple M2 Pro
- 32GB
- 14-inch, 2023
- OS Sonoma Version 14.4.1 (23E224)
| audio file | audio duration (min)| [whisper.cpp](https://huggingface.co./kotoba-tech/kotoba-whisper-v2.0-ggml) (sec) | [faster-whisper](https://huggingface.co./kotoba-tech/kotoba-whisper-v2.0-faster) (sec)| [hf pipeline](https://huggingface.co./kotoba-tech/kotoba-whisper-v2.0) (sec)
|--------|------|-----|------|-----|
|audio 1 | 50.3 | 581 | 2601 | 807 |
|audio 2 | 5.6 | 41 | 73 | 61 |
|audio 3 | 4.9 | 30 | 141 | 54 |
|audio 4 | 5.6 | 35 | 126 | 69 |
Scripts to re-run the experiment can be found bellow:
* [whisper.cpp](https://huggingface.co./kotoba-tech/kotoba-whisper-v1.0-ggml/blob/main/benchmark.sh)
* [faster-whisper](https://huggingface.co./kotoba-tech/kotoba-whisper-v1.0-faster/blob/main/benchmark.sh)
* [hf pipeline](https://huggingface.co./kotoba-tech/kotoba-whisper-v1.0/blob/main/benchmark.sh)
Also, currently whisper.cpp and faster-whisper support the [sequential long-form decoding](https://huggingface.co./distil-whisper/distil-large-v3#sequential-long-form),
and only Huggingface pipeline supports the [chunked long-form decoding](https://huggingface.co./distil-whisper/distil-large-v3#chunked-long-form), which we empirically
found better than the sequnential long-form decoding.
## Conversion details
The original model was converted with the following command:
```
ct2-transformers-converter --model kotoba-tech/kotoba-whisper-bilingual-v1.0 --output_dir kotoba-whisper-bilingual-v1.0-faster --quantization float16
```
Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the [`compute_type` option in CTranslate2](https://opennmt.net/CTranslate2/quantization.html).
## More information
For more information about the kotoba-whisper-v2.0, refer to the original [model card](https://huggingface.co./kotoba-tech/kotoba-whisper-v2.0).
|