--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 32.984847202234825 --- # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4377 - Wer: 32.9848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 0.0 | 1 | 2.2652 | 86.7857 | | 0.1858 | 1.22 | 500 | 0.3301 | 39.7317 | | 0.0881 | 2.44 | 1000 | 0.2966 | 34.9065 | | 0.0457 | 3.67 | 1500 | 0.3160 | 33.8695 | | 0.0195 | 4.89 | 2000 | 0.3571 | 33.9287 | | 0.0047 | 6.11 | 2500 | 0.3913 | 33.4843 | | 0.0014 | 7.33 | 3000 | 0.4186 | 32.9637 | | 0.0005 | 8.56 | 3500 | 0.4286 | 33.0737 | | 0.0005 | 9.78 | 4000 | 0.4377 | 32.9848 | ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2