File size: 2,386 Bytes
689912e
 
 
 
 
 
 
 
 
 
9b0a79d
 
689912e
 
9b0a79d
 
 
 
 
 
 
 
 
 
 
 
 
 
689912e
 
 
 
 
 
 
 
9b0a79d
 
 
689912e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b0a79d
689912e
 
 
 
 
 
 
9b0a79d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
689912e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
language:
- hi
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Hi - Sanchit Gandhi
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 11.0
      type: mozilla-foundation/common_voice_11_0
      config: hi
      split: None
      args: 'config: hi, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 32.984847202234825
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Hi - Sanchit Gandhi

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4377
- Wer: 32.9848

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| No log        | 0.0   | 1    | 2.2652          | 86.7857 |
| 0.1858        | 1.22  | 500  | 0.3301          | 39.7317 |
| 0.0881        | 2.44  | 1000 | 0.2966          | 34.9065 |
| 0.0457        | 3.67  | 1500 | 0.3160          | 33.8695 |
| 0.0195        | 4.89  | 2000 | 0.3571          | 33.9287 |
| 0.0047        | 6.11  | 2500 | 0.3913          | 33.4843 |
| 0.0014        | 7.33  | 3000 | 0.4186          | 32.9637 |
| 0.0005        | 8.56  | 3500 | 0.4286          | 33.0737 |
| 0.0005        | 9.78  | 4000 | 0.4377          | 32.9848 |


### Framework versions

- Transformers 4.40.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2