kkpathak91
commited on
Commit
•
a101734
1
Parent(s):
8ae3ac6
Delete app.py
Browse files
app.py
DELETED
@@ -1,146 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
|
3 |
-
"""
|
4 |
-
@Author : Jiangjie Chen
|
5 |
-
@Time : 2021/12/13 17:17
|
6 |
-
@Contact : [email protected]
|
7 |
-
@Description:
|
8 |
-
"""
|
9 |
-
|
10 |
-
import os
|
11 |
-
import gradio as gr
|
12 |
-
from huggingface_hub import snapshot_download
|
13 |
-
from prettytable import PrettyTable
|
14 |
-
import pandas as pd
|
15 |
-
import torch
|
16 |
-
import traceback
|
17 |
-
|
18 |
-
config = {
|
19 |
-
"model_type": "roberta",
|
20 |
-
"model_name_or_path": "roberta-large",
|
21 |
-
"logic_lambda": 0.5,
|
22 |
-
"prior": "random",
|
23 |
-
"mask_rate": 0.0,
|
24 |
-
"cand_k": 1,
|
25 |
-
"max_seq1_length": 256,
|
26 |
-
"max_seq2_length": 128,
|
27 |
-
"max_num_questions": 8,
|
28 |
-
"do_lower_case": False,
|
29 |
-
"seed": 42,
|
30 |
-
"n_gpu": torch.cuda.device_count(),
|
31 |
-
}
|
32 |
-
|
33 |
-
os.system('git clone https://github.com/jiangjiechen/LOREN/')
|
34 |
-
os.system('rm -r LOREN/data/')
|
35 |
-
os.system('rm -r LOREN/results/')
|
36 |
-
os.system('rm -r LOREN/models/')
|
37 |
-
os.system('mv LOREN/* ./')
|
38 |
-
|
39 |
-
model_dir = snapshot_download('Jiangjie/loren')
|
40 |
-
config['fc_dir'] = os.path.join(model_dir, 'fact_checking/roberta-large/')
|
41 |
-
config['mrc_dir'] = os.path.join(model_dir, 'mrc_seq2seq/bart-base/')
|
42 |
-
config['er_dir'] = os.path.join(model_dir, 'evidence_retrieval/')
|
43 |
-
|
44 |
-
|
45 |
-
from src.loren import Loren
|
46 |
-
|
47 |
-
|
48 |
-
loren = Loren(config, verbose=False)
|
49 |
-
try:
|
50 |
-
js = loren.check('Donald Trump won the 2020 U.S. presidential election.')
|
51 |
-
except Exception as e:
|
52 |
-
raise ValueError(e)
|
53 |
-
|
54 |
-
|
55 |
-
def highlight_phrase(text, phrase):
|
56 |
-
text = loren.fc_client.tokenizer.clean_up_tokenization(text)
|
57 |
-
return text.replace('<mask>', f'<i><b>{phrase}</b></i>')
|
58 |
-
|
59 |
-
|
60 |
-
def highlight_entity(text, entity):
|
61 |
-
return text.replace(entity, f'<i><b>{entity}</b></i>')
|
62 |
-
|
63 |
-
|
64 |
-
def gradio_formatter(js, output_type):
|
65 |
-
zebra_css = '''
|
66 |
-
tr:nth-child(even) {
|
67 |
-
background: #f1f1f1;
|
68 |
-
}
|
69 |
-
thead{
|
70 |
-
background: #f1f1f1;
|
71 |
-
}'''
|
72 |
-
if output_type == 'e':
|
73 |
-
data = {'Evidence': [highlight_entity(x, e) for x, e in zip(js['evidence'], js['entities'])]}
|
74 |
-
elif output_type == 'z':
|
75 |
-
p_sup, p_ref, p_nei = [], [], []
|
76 |
-
for x in js['phrase_veracity']:
|
77 |
-
max_idx = torch.argmax(torch.tensor(x)).tolist()
|
78 |
-
x = ['%.4f' % xx for xx in x]
|
79 |
-
x[max_idx] = f'<i><b>{x[max_idx]}</b></i>'
|
80 |
-
p_sup.append(x[2])
|
81 |
-
p_ref.append(x[0])
|
82 |
-
p_nei.append(x[1])
|
83 |
-
|
84 |
-
data = {
|
85 |
-
'Claim Phrase': js['claim_phrases'],
|
86 |
-
'Local Premise': [highlight_phrase(q, x[0]) for q, x in zip(js['cloze_qs'], js['evidential'])],
|
87 |
-
'p_SUP': p_sup,
|
88 |
-
'p_REF': p_ref,
|
89 |
-
'p_NEI': p_nei,
|
90 |
-
}
|
91 |
-
else:
|
92 |
-
raise NotImplementedError
|
93 |
-
data = pd.DataFrame(data)
|
94 |
-
pt = PrettyTable(field_names=list(data.columns),
|
95 |
-
align='l', border=True, hrules=1, vrules=1)
|
96 |
-
for v in data.values:
|
97 |
-
pt.add_row(v)
|
98 |
-
html = pt.get_html_string(attributes={
|
99 |
-
'style': 'border-width: 2px; bordercolor: black'
|
100 |
-
}, format=True)
|
101 |
-
html = f'<head> <style type="text/css"> {zebra_css} </style> </head>\n' + html
|
102 |
-
html = html.replace('<', '<').replace('>', '>')
|
103 |
-
return html
|
104 |
-
|
105 |
-
|
106 |
-
def run(claim):
|
107 |
-
try:
|
108 |
-
js = loren.check(claim)
|
109 |
-
except Exception as error_msg:
|
110 |
-
exc = traceback.format_exc()
|
111 |
-
msg = f'[Error]: {error_msg}.\n[Traceback]: {exc}'
|
112 |
-
loren.logger.error(claim)
|
113 |
-
loren.logger.error(msg)
|
114 |
-
return 'Oops, something went wrong.', '', ''
|
115 |
-
label = js['claim_veracity']
|
116 |
-
loren.logger.warning(label + str(js))
|
117 |
-
ev_html = gradio_formatter(js, 'e')
|
118 |
-
z_html = gradio_formatter(js, 'z')
|
119 |
-
return label, z_html, ev_html
|
120 |
-
|
121 |
-
|
122 |
-
iface = gr.Interface(
|
123 |
-
fn=run,
|
124 |
-
inputs="text",
|
125 |
-
outputs=[
|
126 |
-
'text',
|
127 |
-
'html',
|
128 |
-
'html',
|
129 |
-
],
|
130 |
-
examples=['Donald Trump won the U.S. 2020 presidential election.',
|
131 |
-
'The first inauguration of Bill Clinton was in the United States.',
|
132 |
-
'The Cry of the Owl is based on a book by an American.',
|
133 |
-
'Smriti Mandhana is an Indian woman.'],
|
134 |
-
title="LOREN",
|
135 |
-
layout='horizontal',
|
136 |
-
description="LOREN is an interpretable Fact Verification model using Wikipedia as its knowledge source. "
|
137 |
-
"This is a demo system for the AAAI 2022 paper: \"LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification\"(https://arxiv.org/abs/2012.13577). "
|
138 |
-
"See the paper for more details. You can add a *FLAG* on the bottom to record interesting or bad cases! "
|
139 |
-
"(Note that the demo system directly retrieves evidence from an up-to-date Wikipedia, which is different from the evidence used in the paper.)",
|
140 |
-
flagging_dir='results/flagged/',
|
141 |
-
allow_flagging=True,
|
142 |
-
flagging_options=['Interesting!', 'Error: Claim Phrase Parsing', 'Error: Local Premise',
|
143 |
-
'Error: Require Commonsense', 'Error: Evidence Retrieval'],
|
144 |
-
enable_queue=True
|
145 |
-
)
|
146 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|