kkpathak91 commited on
Commit
a101734
1 Parent(s): 8ae3ac6

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -146
app.py DELETED
@@ -1,146 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
-
3
- """
4
- @Author : Jiangjie Chen
5
- @Time : 2021/12/13 17:17
6
- @Contact : [email protected]
7
- @Description:
8
- """
9
-
10
- import os
11
- import gradio as gr
12
- from huggingface_hub import snapshot_download
13
- from prettytable import PrettyTable
14
- import pandas as pd
15
- import torch
16
- import traceback
17
-
18
- config = {
19
- "model_type": "roberta",
20
- "model_name_or_path": "roberta-large",
21
- "logic_lambda": 0.5,
22
- "prior": "random",
23
- "mask_rate": 0.0,
24
- "cand_k": 1,
25
- "max_seq1_length": 256,
26
- "max_seq2_length": 128,
27
- "max_num_questions": 8,
28
- "do_lower_case": False,
29
- "seed": 42,
30
- "n_gpu": torch.cuda.device_count(),
31
- }
32
-
33
- os.system('git clone https://github.com/jiangjiechen/LOREN/')
34
- os.system('rm -r LOREN/data/')
35
- os.system('rm -r LOREN/results/')
36
- os.system('rm -r LOREN/models/')
37
- os.system('mv LOREN/* ./')
38
-
39
- model_dir = snapshot_download('Jiangjie/loren')
40
- config['fc_dir'] = os.path.join(model_dir, 'fact_checking/roberta-large/')
41
- config['mrc_dir'] = os.path.join(model_dir, 'mrc_seq2seq/bart-base/')
42
- config['er_dir'] = os.path.join(model_dir, 'evidence_retrieval/')
43
-
44
-
45
- from src.loren import Loren
46
-
47
-
48
- loren = Loren(config, verbose=False)
49
- try:
50
- js = loren.check('Donald Trump won the 2020 U.S. presidential election.')
51
- except Exception as e:
52
- raise ValueError(e)
53
-
54
-
55
- def highlight_phrase(text, phrase):
56
- text = loren.fc_client.tokenizer.clean_up_tokenization(text)
57
- return text.replace('<mask>', f'<i><b>{phrase}</b></i>')
58
-
59
-
60
- def highlight_entity(text, entity):
61
- return text.replace(entity, f'<i><b>{entity}</b></i>')
62
-
63
-
64
- def gradio_formatter(js, output_type):
65
- zebra_css = '''
66
- tr:nth-child(even) {
67
- background: #f1f1f1;
68
- }
69
- thead{
70
- background: #f1f1f1;
71
- }'''
72
- if output_type == 'e':
73
- data = {'Evidence': [highlight_entity(x, e) for x, e in zip(js['evidence'], js['entities'])]}
74
- elif output_type == 'z':
75
- p_sup, p_ref, p_nei = [], [], []
76
- for x in js['phrase_veracity']:
77
- max_idx = torch.argmax(torch.tensor(x)).tolist()
78
- x = ['%.4f' % xx for xx in x]
79
- x[max_idx] = f'<i><b>{x[max_idx]}</b></i>'
80
- p_sup.append(x[2])
81
- p_ref.append(x[0])
82
- p_nei.append(x[1])
83
-
84
- data = {
85
- 'Claim Phrase': js['claim_phrases'],
86
- 'Local Premise': [highlight_phrase(q, x[0]) for q, x in zip(js['cloze_qs'], js['evidential'])],
87
- 'p_SUP': p_sup,
88
- 'p_REF': p_ref,
89
- 'p_NEI': p_nei,
90
- }
91
- else:
92
- raise NotImplementedError
93
- data = pd.DataFrame(data)
94
- pt = PrettyTable(field_names=list(data.columns),
95
- align='l', border=True, hrules=1, vrules=1)
96
- for v in data.values:
97
- pt.add_row(v)
98
- html = pt.get_html_string(attributes={
99
- 'style': 'border-width: 2px; bordercolor: black'
100
- }, format=True)
101
- html = f'<head> <style type="text/css"> {zebra_css} </style> </head>\n' + html
102
- html = html.replace('&lt;', '<').replace('&gt;', '>')
103
- return html
104
-
105
-
106
- def run(claim):
107
- try:
108
- js = loren.check(claim)
109
- except Exception as error_msg:
110
- exc = traceback.format_exc()
111
- msg = f'[Error]: {error_msg}.\n[Traceback]: {exc}'
112
- loren.logger.error(claim)
113
- loren.logger.error(msg)
114
- return 'Oops, something went wrong.', '', ''
115
- label = js['claim_veracity']
116
- loren.logger.warning(label + str(js))
117
- ev_html = gradio_formatter(js, 'e')
118
- z_html = gradio_formatter(js, 'z')
119
- return label, z_html, ev_html
120
-
121
-
122
- iface = gr.Interface(
123
- fn=run,
124
- inputs="text",
125
- outputs=[
126
- 'text',
127
- 'html',
128
- 'html',
129
- ],
130
- examples=['Donald Trump won the U.S. 2020 presidential election.',
131
- 'The first inauguration of Bill Clinton was in the United States.',
132
- 'The Cry of the Owl is based on a book by an American.',
133
- 'Smriti Mandhana is an Indian woman.'],
134
- title="LOREN",
135
- layout='horizontal',
136
- description="LOREN is an interpretable Fact Verification model using Wikipedia as its knowledge source. "
137
- "This is a demo system for the AAAI 2022 paper: \"LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification\"(https://arxiv.org/abs/2012.13577). "
138
- "See the paper for more details. You can add a *FLAG* on the bottom to record interesting or bad cases! "
139
- "(Note that the demo system directly retrieves evidence from an up-to-date Wikipedia, which is different from the evidence used in the paper.)",
140
- flagging_dir='results/flagged/',
141
- allow_flagging=True,
142
- flagging_options=['Interesting!', 'Error: Claim Phrase Parsing', 'Error: Local Premise',
143
- 'Error: Require Commonsense', 'Error: Evidence Retrieval'],
144
- enable_queue=True
145
- )
146
- iface.launch()