--- library_name: transformers language: - ne license: mit base_model: kiranpantha/w2v-bert-2.0-nepali-unlabeled-1 tags: - generated_from_trainer datasets: - kiranpantha/OpenSLR54-Balanced-Nepali metrics: - wer model-index: - name: Wave2Vec2-Bert2.0 - Kiran Pantha results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR54 type: kiranpantha/OpenSLR54-Balanced-Nepali config: default split: test args: 'config: ne, split: train,test' metrics: - name: Wer type: wer value: 0.44966842373745963 --- # Wave2Vec2-Bert2.0 - Kiran Pantha This model is a fine-tuned version of [kiranpantha/w2v-bert-2.0-nepali-unlabeled-1](https://huggingface.co./kiranpantha/w2v-bert-2.0-nepali-unlabeled-1) on the OpenSLR54 dataset. It achieves the following results on the evaluation set: - Loss: 0.5190 - Wer: 0.4497 - Cer: 0.1090 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:------:|:-----:|:------:|:---------------:|:------:| | 0.4494 | 0.0375 | 300 | 0.1147 | 0.5118 | 0.4793 | | 0.5556 | 0.075 | 600 | 0.1448 | 0.6503 | 0.5808 | | 0.5684 | 0.1125 | 900 | 0.1418 | 0.6258 | 0.5741 | | 0.5309 | 0.15 | 1200 | 0.1446 | 0.6867 | 0.5391 | | 0.615 | 0.1875 | 1500 | 0.1566 | 0.6692 | 0.5844 | | 0.5627 | 0.225 | 1800 | 0.1434 | 0.6586 | 0.5597 | | 0.6188 | 0.2625 | 2100 | 0.1500 | 0.6250 | 0.5559 | | 0.5888 | 0.3 | 2400 | 0.1624 | 0.6863 | 0.6162 | | 0.5435 | 0.3375 | 2700 | 0.1551 | 0.6415 | 0.5736 | | 0.5667 | 0.375 | 3000 | 0.1478 | 0.6041 | 0.5661 | | 0.5323 | 0.4125 | 3300 | 0.1392 | 0.5805 | 0.5327 | | 0.5471 | 0.45 | 3600 | 0.1390 | 0.5699 | 0.5327 | | 0.5939 | 0.4875 | 3900 | 0.1341 | 0.5739 | 0.5169 | | 0.5795 | 0.525 | 4200 | 0.1392 | 0.6036 | 0.5278 | | 0.4974 | 0.5625 | 4500 | 0.1255 | 0.5331 | 0.4997 | | 0.5247 | 0.6 | 4800 | 0.1300 | 0.5649 | 0.5190 | | 0.5035 | 0.6375 | 5100 | 0.1292 | 0.5583 | 0.5067 | | 0.5354 | 0.675 | 5400 | 0.1270 | 0.5472 | 0.5115 | | 0.536 | 0.7125 | 5700 | 0.1283 | 0.5406 | 0.5012 | | 0.498 | 0.75 | 6000 | 0.1331 | 0.5747 | 0.5167 | | 0.4339 | 0.7875 | 6300 | 0.1266 | 0.5224 | 0.4846 | | 0.4504 | 0.825 | 6600 | 0.1234 | 0.5549 | 0.4982 | | 0.4237 | 0.8625 | 6900 | 0.1221 | 0.5376 | 0.4759 | | 0.4434 | 0.9 | 7200 | 0.1303 | 0.5651 | 0.5080 | | 0.443 | 0.9375 | 7500 | 0.1219 | 0.5222 | 0.4889 | | 0.4282 | 0.975 | 7800 | 0.1247 | 0.5297 | 0.4936 | | 0.4128 | 1.0125 | 8100 | 0.1230 | 0.5263 | 0.4804 | | 0.4507 | 1.05 | 8400 | 0.1254 | 0.5548 | 0.4881 | | 0.4008 | 1.0875 | 8700 | 0.1232 | 0.5411 | 0.4816 | | 0.4834 | 1.125 | 9000 | 0.1215 | 0.5264 | 0.4853 | | 0.3955 | 1.1625 | 9300 | 0.1232 | 0.5288 | 0.4876 | | 0.3837 | 1.2 | 9600 | 0.1224 | 0.5496 | 0.4853 | | 0.3819 | 1.2375 | 9900 | 0.5215 | 0.4739 | 0.1232 | | 0.3771 | 1.275 | 10200 | 0.5115 | 0.4641 | 0.1188 | | 0.4067 | 1.3125 | 10500 | 0.5274 | 0.4810 | 0.1236 | | 0.3561 | 1.35 | 10800 | 0.5366 | 0.4739 | 0.1182 | | 0.3971 | 1.3875 | 11100 | 0.4951 | 0.4669 | 0.1178 | | 0.337 | 1.425 | 11400 | 0.5180 | 0.4630 | 0.1156 | | 0.4031 | 1.4625 | 11700 | 0.4895 | 0.4664 | 0.1156 | | 0.4278 | 1.5 | 12000 | 0.4858 | 0.4469 | 0.1107 | | 0.3332 | 1.5375 | 12300 | 0.4986 | 0.4546 | 0.1130 | | 0.3516 | 1.575 | 12600 | 0.5067 | 0.4677 | 0.1148 | | 0.4022 | 1.6125 | 12900 | 0.5022 | 0.4638 | 0.1114 | | 0.3922 | 1.65 | 13200 | 0.4753 | 0.4588 | 0.1130 | | 0.3483 | 1.6875 | 13500 | 0.4812 | 0.4562 | 0.1135 | | 0.3572 | 1.725 | 13800 | 0.4940 | 0.4461 | 0.1083 | | 0.2796 | 1.7625 | 14100 | 0.4854 | 0.4457 | 0.1082 | | 0.2555 | 1.8 | 14400 | 0.5231 | 0.4482 | 0.1099 | | 0.2823 | 1.8375 | 14700 | 0.5126 | 0.4475 | 0.1093 | | 0.2478 | 1.875 | 15000 | 0.5063 | 0.4458 | 0.1087 | | 0.2435 | 1.9125 | 15300 | 0.5151 | 0.4409 | 0.1077 | | 0.2478 | 1.95 | 15600 | 0.5185 | 0.4464 | 0.1084 | | 0.2653 | 1.9875 | 15900 | 0.5190 | 0.4497 | 0.1090 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1