--- license: apache-2.0 datasets: - mozilla-foundation/common_voice_7_0 language: - ur metrics: - wer - cer library_name: transformers pipeline_tag: automatic-speech-recognition model-index: - name: wav2vec2-urdu results: - task: type: automatic-speech-recognition # Required. Example: automatic-speech-recognition name: Urdu Speech Recognition # Optional. Example: Speech Recognition dataset: type: common_voice # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: Common Voice (Urdu) # Required. A pretty name for the dataset. Example: Common Voice (French) metrics: - type: wer # Required. Example: wer. Use metric id from https://hf.co/metrics value: 57.47 # Required. Example: 20.90 name: WER # Optional. Example: Test WER config: load_metric("wer") # Optional. The name of the metric configuration used in `load_metric()`. Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`. See the `datasets` docs for more info: https://huggingface.co./docs/datasets/v2.1.0/en/loading#load-configurations verified: true # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). - type: cer # Required. Example: wer. Use metric id from https://hf.co/metrics value: 32.68 # Required. Example: 20.90 name: CER # Optional. Example: Test WER config: load_metric("cer") # Optional. The name of the metric configuration used in `load_metric()`. Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`. See the `datasets` docs for more info: https://huggingface.co./docs/datasets/v2.1.0/en/loading#load-configurations verified: true # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). --- # wav2vec2-large-xls-r-300m-Urdu This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-urdu-urm-60](https://huggingface.co./Harveenchadha/vakyansh-wav2vec2-urdu-urm-60) on the common_voice dataset. It achieves the following results on the evaluation set: - Wer: 0.5747 - Cer: 0.3268 ## Model description The training and valid dataset is 0.58 hours. It was hard to train any model on lower number of so I decided to take vakyansh-wav2vec2-urdu-urm-60 checkpoint and finetune the wav2vec2 model. ## Training procedure Trained on Harveenchadha/vakyansh-wav2vec2-urdu-urm-60 due to lesser number of samples. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 4.3054 | 16.67 | 50 | 9.0055 | 0.8306 | 0.4869 | | 2.0629 | 33.33 | 100 | 9.5849 | 0.6061 | 0.3414 | | 0.8966 | 50.0 | 150 | 4.8686 | 0.6052 | 0.3426 | | 0.4197 | 66.67 | 200 | 12.3261 | 0.5817 | 0.3370 | | 0.294 | 83.33 | 250 | 11.9653 | 0.5712 | 0.3328 | | 0.2329 | 100.0 | 300 | 7.6846 | 0.5747 | 0.3268 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0