diff --git "a/Boosting_Wav2Vec2_with_n_grams_in_🤗_Transformers_(1).ipynb" "b/Boosting_Wav2Vec2_with_n_grams_in_🤗_Transformers_(1).ipynb"
new file mode 100644--- /dev/null
+++ "b/Boosting_Wav2Vec2_with_n_grams_in_🤗_Transformers_(1).ipynb"
@@ -0,0 +1,10072 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "1LrJXl6HY3xO"
+ },
+ "source": [
+ "# **Boosting Wav2Vec2 with n-grams in 🤗 Transformers**\n",
+ "\n",
+ "**Wav2Vec2** is a popular pre-trained model for speech recognition. Released in [September 2020](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) by Meta AI Research, the novel architecture catalyzed progress in self-supervised pretraining for speech recognition, *e.g.* [*G. Ng et al.*, 2021](https://arxiv.org/pdf/2104.03416.pdf), [*Chen et al*, 2021](https://arxiv.org/abs/2110.13900), [*Hsu et al.*, 2021](https://arxiv.org/abs/2106.07447) and [*Babu et al.*, 2021](https://arxiv.org/abs/2111.09296). On the Hugging Face Hub, Wav2Vec2's most popular pre-trained checkpoint currently amounts to over [**250,000** monthly downloads](https://huggingface.co./facebook/wav2vec2-base-960h).\n",
+ "\n",
+ "Using Connectionist Temporal Classification (CTC), pre-trained Wav2Vec2-like checkpoints are extremely easy to fine-tune on downstream speech recognition tasks.\n",
+ "In a nutshell, fine-tuning pre-trained Wav2Vec2 checkpoints works as follows: \n",
+ "\n",
+ "A single randomly initialized linear layer is stacked on top of the pre-trained checkpoint and trained to classify raw audio input to a sequence of letters. It does so by:\n",
+ "\n",
+ "1. extracting audio representations from the raw audio (using CNN layers),\n",
+ "2. processing the sequence of audio representations with a stack of transformer layers, and,\n",
+ "3. classifying the processed audio representations into a sequence of output letters.\n",
+ "\n",
+ "Previously audio classification models required an additional language model (LM) and a dictionary to transform the sequence of classified audio frames to a coherent transcription.\n",
+ "Wav2Vec2's architecture is based on transformer layers, thus giving each processed audio representation context \n",
+ "from all other audio representations. In addition, \n",
+ "Wav2Vec2 leverages the [CTC algorithm](https://distill.pub/2017/ctc/) for fine-tuning, which solves the problem of alignment between a varying \"input audio length\"-to-\"output text length\" ratio.\n",
+ "\n",
+ "Having contextualized audio classifications and no alignment problems, Wav2Vec2 does not require \n",
+ "an external language model or dictionary to yield acceptable audio transcriptions.\n",
+ "\n",
+ "As can be seen in Appendix C of the [official paper](https://arxiv.org/abs/2006.11477), Wav2Vec2 gives impressive downstream performances on [LibriSpeech]((https://huggingface.co./datasets/librispeech_asr)) without using a language model at all. However, from the appendix, it also becomes clear that using Wav2Vec2 in combination with a language model can yield a significant improvement, especially when the model was trained on only 10 minutes of transcribed audio.\n",
+ "\n",
+ "Until recently, the 🤗 Transformers library did not offer a simple user interface to decode audio files with a fine-tuned Wav2Vec2 **and** a language model. This has thankfully changed. 🤗 Transformers now offers an easy-to-use integration with *Kensho Technologies'* [pyctcdecode library](https://github.com/kensho-technologies/pyctcdecode). This blog post is a step-by-step **technical** guide to explain how one can create an **n-gram** language model and combine it with an existing fine-tuned Wav2Vec2 checkpoint using 🤗 Datasets and 🤗 Transformers.\n",
+ "\n",
+ "We start by:\n",
+ "\n",
+ "1. How does decoding audio with an LM differ from decoding audio without an LM?\n",
+ "2. How to get suitable data for a language model?\n",
+ "3. How to build an *n-gram* with KenLM?\n",
+ "4. How to combine the *n-gram* with a fine-tuned Wav2Vec2 checkpoint?\n",
+ "\n",
+ "For a deep dive into how Wav2Vec2 functions - which is not necessary for this blog post - the reader is advised to consult the following material:\n",
+ "\n",
+ "- [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477)\n",
+ "- [Fine-Tune Wav2Vec2 for English ASR with 🤗 Transformers](https://huggingface.co./blog/fine-tune-wav2vec2-english)\n",
+ "- [An Illustrated Tour of Wav2vec 2.0](https://jonathanbgn.com/2021/09/30/illustrated-wav2vec-2.html)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "nu5oeVSvprSp"
+ },
+ "source": [
+ "## **1. Decoding audio data with Wav2Vec2 and a language model**\n",
+ "\n",
+ "As shown in 🤗 Transformers [exemple docs of Wav2Vec2](https://huggingface.co./docs/transformers/master/en/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC), audio can be transcribed as follows.\n",
+ "\n",
+ "First, we install `datasets` and `transformers`.\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "OWGc_zfyq5_T",
+ "outputId": "4cc791f5-6a7c-4c21-c880-bd47df479744"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Requirement already satisfied: datasets in /opt/conda/lib/python3.8/site-packages (1.18.2.dev0)\n",
+ "Collecting datasets\n",
+ " Downloading datasets-1.18.3-py3-none-any.whl (311 kB)\n",
+ " |████████████████████████████████| 311 kB 24.2 MB/s \n",
+ "\u001b[?25hRequirement already satisfied: transformers in /opt/conda/lib/python3.8/site-packages (4.17.0.dev0)\n",
+ "Requirement already satisfied: aiohttp in /opt/conda/lib/python3.8/site-packages (from datasets) (3.8.1)\n",
+ "Requirement already satisfied: xxhash in /opt/conda/lib/python3.8/site-packages (from datasets) (2.0.2)\n",
+ "Requirement already satisfied: multiprocess in /opt/conda/lib/python3.8/site-packages (from datasets) (0.70.12.2)\n",
+ "Requirement already satisfied: dill in /opt/conda/lib/python3.8/site-packages (from datasets) (0.3.4)\n",
+ "Requirement already satisfied: fsspec[http]>=2021.05.0 in /opt/conda/lib/python3.8/site-packages (from datasets) (2022.1.0)\n",
+ "Requirement already satisfied: pyarrow!=4.0.0,>=3.0.0 in /opt/conda/lib/python3.8/site-packages (from datasets) (6.0.1)\n",
+ "Requirement already satisfied: pandas in /opt/conda/lib/python3.8/site-packages (from datasets) (1.4.0)\n",
+ "Requirement already satisfied: huggingface-hub<1.0.0,>=0.1.0 in /opt/conda/lib/python3.8/site-packages (from datasets) (0.4.0)\n",
+ "Requirement already satisfied: numpy>=1.17 in /opt/conda/lib/python3.8/site-packages (from datasets) (1.19.2)\n",
+ "Requirement already satisfied: packaging in /opt/conda/lib/python3.8/site-packages (from datasets) (21.3)\n",
+ "Requirement already satisfied: tqdm>=4.62.1 in /opt/conda/lib/python3.8/site-packages (from datasets) (4.62.3)\n",
+ "Requirement already satisfied: requests>=2.19.0 in /opt/conda/lib/python3.8/site-packages (from datasets) (2.24.0)\n",
+ "Requirement already satisfied: tokenizers!=0.11.3,>=0.10.1 in /opt/conda/lib/python3.8/site-packages (from transformers) (0.11.4)\n",
+ "Requirement already satisfied: sacremoses in /opt/conda/lib/python3.8/site-packages (from transformers) (0.0.47)\n",
+ "Requirement already satisfied: regex!=2019.12.17 in /opt/conda/lib/python3.8/site-packages (from transformers) (2022.1.18)\n",
+ "Requirement already satisfied: pyyaml>=5.1 in /opt/conda/lib/python3.8/site-packages (from transformers) (5.4.1)\n",
+ "Requirement already satisfied: filelock in /opt/conda/lib/python3.8/site-packages (from transformers) (3.0.12)\n",
+ "Requirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/lib/python3.8/site-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (4.0.1)\n",
+ "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/lib/python3.8/site-packages (from packaging->datasets) (3.0.7)\n",
+ "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /opt/conda/lib/python3.8/site-packages (from requests>=2.19.0->datasets) (1.25.11)\n",
+ "Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.8/site-packages (from requests>=2.19.0->datasets) (2.10)\n",
+ "Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.8/site-packages (from requests>=2.19.0->datasets) (2020.12.5)\n",
+ "Requirement already satisfied: chardet<4,>=3.0.2 in /opt/conda/lib/python3.8/site-packages (from requests>=2.19.0->datasets) (3.0.4)\n",
+ "Requirement already satisfied: frozenlist>=1.1.1 in /opt/conda/lib/python3.8/site-packages (from aiohttp->datasets) (1.3.0)\n",
+ "Requirement already satisfied: aiosignal>=1.1.2 in /opt/conda/lib/python3.8/site-packages (from aiohttp->datasets) (1.2.0)\n",
+ "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /opt/conda/lib/python3.8/site-packages (from aiohttp->datasets) (4.0.2)\n",
+ "Requirement already satisfied: attrs>=17.3.0 in /opt/conda/lib/python3.8/site-packages (from aiohttp->datasets) (21.4.0)\n",
+ "Requirement already satisfied: multidict<7.0,>=4.5 in /opt/conda/lib/python3.8/site-packages (from aiohttp->datasets) (6.0.2)\n",
+ "Requirement already satisfied: yarl<2.0,>=1.0 in /opt/conda/lib/python3.8/site-packages (from aiohttp->datasets) (1.7.2)\n",
+ "Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /opt/conda/lib/python3.8/site-packages (from aiohttp->datasets) (2.0.10)\n",
+ "Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.8/site-packages (from pandas->datasets) (2021.1)\n",
+ "Requirement already satisfied: python-dateutil>=2.8.1 in /opt/conda/lib/python3.8/site-packages (from pandas->datasets) (2.8.2)\n",
+ "Requirement already satisfied: six in /opt/conda/lib/python3.8/site-packages (from sacremoses->transformers) (1.15.0)\n",
+ "Requirement already satisfied: joblib in /opt/conda/lib/python3.8/site-packages (from sacremoses->transformers) (1.1.0)\n",
+ "Requirement already satisfied: click in /opt/conda/lib/python3.8/site-packages (from sacremoses->transformers) (8.0.3)\n",
+ "Installing collected packages: datasets\n",
+ " Attempting uninstall: datasets\n",
+ " Found existing installation: datasets 1.18.2.dev0\n",
+ " Uninstalling datasets-1.18.2.dev0:\n",
+ "\u001b[31mERROR: Could not install packages due to an OSError: [Errno 13] Permission denied: 'WHEEL'\n",
+ "Consider using the `--user` option or check the permissions.\n",
+ "\u001b[0m\n",
+ "\u001b[33mWARNING: You are using pip version 21.3.1; however, version 22.0.3 is available.\n",
+ "You should consider upgrading via the '/opt/conda/bin/python -m pip install --upgrade pip' command.\u001b[0m\n"
+ ]
+ }
+ ],
+ "source": [
+ "!pip install -U datasets transformers"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ZzcM5yC5rICZ"
+ },
+ "source": [
+ "Let's load a small excerpt of the [Librispeech dataset](https://huggingface.co./datasets/librispeech_asr) to demonstrate Wav2Vec2's speech transcription capabilities."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "dAerOhydrNFR",
+ "outputId": "4ba5ed61-f6ef-40ae-828d-7e4f5c0f4f87"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Reusing dataset librispeech_asr (/root/.cache/huggingface/datasets/hf-internal-testing___librispeech_asr/clean/2.1.0/f2c70a4d03ab4410954901bde48c54b85ca1b7f9bf7d616e7e2a72b5ee6ddbfc)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "Dataset({\n",
+ " features: ['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id'],\n",
+ " num_rows: 73\n",
+ "})"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from datasets import load_dataset\n",
+ "\n",
+ "dataset = load_dataset(\"hf-internal-testing/librispeech_asr_demo\", \"clean\", split=\"validation\")\n",
+ "dataset"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "-AkdbAlyrszm"
+ },
+ "source": [
+ "We can pick one of the 73 audio samples and listen to it."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 93
+ },
+ "id": "pSomT7k_r1QX",
+ "outputId": "8475f442-56e6-4c51-bd11-edf5d212ec48"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "he tells us that at this festive season of the year with christmas and roast beef looming before us similes drawn from eating and its results occur most readily to the mind\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ " Your browser does not support the audio element.\n",
+ " \n",
+ " "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import IPython.display as ipd\n",
+ "\n",
+ "audio_sample = dataset[2]\n",
+ "print(audio_sample[\"text\"].lower())\n",
+ "ipd.Audio(data=audio_sample[\"audio\"][\"array\"], autoplay=True, rate=audio_sample[\"audio\"][\"sampling_rate\"])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ZbBGOqQusdO6"
+ },
+ "source": [
+ "Having chosen a data sample, we now load the fine-tuned model and processor."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "5FUPvu0crmsY"
+ },
+ "outputs": [],
+ "source": [
+ "from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC\n",
+ "\n",
+ "processor = Wav2Vec2Processor.from_pretrained(\"facebook/wav2vec2-base-100h\")\n",
+ "model = Wav2Vec2ForCTC.from_pretrained(\"facebook/wav2vec2-base-100h\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "7L8Th_yTslta"
+ },
+ "source": [
+ "Next, we process the data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "6NoMX8qfssuw"
+ },
+ "outputs": [],
+ "source": [
+ "inputs = processor(audio_sample[\"audio\"][\"array\"], sampling_rate=16_000, return_tensors=\"pt\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "xyM2MqwEs1p7"
+ },
+ "source": [
+ "forward it to the model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "4KWDRrG0s27p"
+ },
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "\n",
+ "with torch.no_grad():\n",
+ " logits = model(**inputs).logits"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "pEHhf_1os4rZ"
+ },
+ "source": [
+ "and decode it"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ },
+ "id": "aJREUIdqs5ak",
+ "outputId": "40de5ef4-5afd-4518-e3bc-c81cb976b46e"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "string"
+ },
+ "text/plain": [
+ "'he tells us that at this festive season of the year with christmaus and rose beef looming before us simalyis drawn from eating and its results occur most readily to the mind'"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "predicted_ids = torch.argmax(logits, dim=-1)\n",
+ "transcription = processor.batch_decode(predicted_ids)\n",
+ "\n",
+ "transcription[0].lower()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ifBW-tM0yWhS"
+ },
+ "source": [
+ "Comparing the transcription to the target transcription above, we can see that some words *sound* correct, but are not *spelled* correctly, *e.g.*:\n",
+ "\n",
+ "- *christmaus* vs. *christmas*\n",
+ "- *rose* vs. *roast*\n",
+ "- *simalyis* vs. *similes*\n",
+ "\n",
+ "Let's see whether combining Wav2Vec2 with an ***n-gram*** lnguage model can help here."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "JC1FrBDnzTJ5"
+ },
+ "source": [
+ "First, we need to install `pyctcdecode` and `kenlm`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "TvDJ7CYpzSJQ",
+ "outputId": "cb8e254d-7e9e-4549-ad29-55eded55c172"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\u001b[33mWARNING: Ignoring invalid distribution -atasets (/opt/conda/lib/python3.8/site-packages)\u001b[0m\n",
+ "\u001b[33mWARNING: Ignoring invalid distribution -atasets (/opt/conda/lib/python3.8/site-packages)\u001b[0m\n",
+ "Collecting https://github.com/kpu/kenlm/archive/master.zip\n",
+ " Downloading https://github.com/kpu/kenlm/archive/master.zip\n",
+ " \\ 541 kB 1.8 MB/s\n",
+ "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25ldone\n",
+ "\u001b[?25hCollecting pyctcdecode\n",
+ " Downloading pyctcdecode-0.3.0-py2.py3-none-any.whl (43 kB)\n",
+ " |████████████████████████████████| 43 kB 7.0 MB/s \n",
+ "\u001b[?25hRequirement already satisfied: numpy<2.0.0,>=1.15.0 in /opt/conda/lib/python3.8/site-packages (from pyctcdecode) (1.19.2)\n",
+ "Collecting hypothesis<7,>=6.14\n",
+ " Downloading hypothesis-6.36.1-py3-none-any.whl (376 kB)\n",
+ " |████████████████████████████████| 376 kB 55.0 MB/s \n",
+ "\u001b[?25hCollecting pygtrie<3.0,>=2.1\n",
+ " Downloading pygtrie-2.4.2.tar.gz (35 kB)\n",
+ " Preparing metadata (setup.py) ... \u001b[?25ldone\n",
+ "\u001b[?25hRequirement already satisfied: attrs>=19.2.0 in /opt/conda/lib/python3.8/site-packages (from hypothesis<7,>=6.14->pyctcdecode) (21.4.0)\n",
+ "Collecting sortedcontainers<3.0.0,>=2.1.0\n",
+ " Downloading sortedcontainers-2.4.0-py2.py3-none-any.whl (29 kB)\n",
+ "Building wheels for collected packages: kenlm, pygtrie\n",
+ " Building wheel for kenlm (setup.py) ... \u001b[?25ldone\n",
+ "\u001b[?25h Created wheel for kenlm: filename=kenlm-0.0.0-cp38-cp38-linux_x86_64.whl size=2345337 sha256=dc0d81c6f059a5f0841cf0f6a4ca235cae715d4f9f52a9311e67989f64782ae3\n",
+ " Stored in directory: /tmp/pip-ephem-wheel-cache-7xk1d9qa/wheels/ff/08/4e/a3ddc0e786e0f3c1fcd2e7a82c4324c02fc3ae2638471406d2\n",
+ " Building wheel for pygtrie (setup.py) ... \u001b[?25ldone\n",
+ "\u001b[?25h Created wheel for pygtrie: filename=pygtrie-2.4.2-py3-none-any.whl size=19063 sha256=ea48bfe279335b62a3582df18a9f3b64abb89e71bb06753eea974f57f03f97e7\n",
+ " Stored in directory: /workspace/.cache/pip/wheels/31/03/7b/f685b394a937bc97d2d40908d45aa31f3d9473bca6e9019153\n",
+ "Successfully built kenlm pygtrie\n",
+ "\u001b[33mWARNING: Ignoring invalid distribution -atasets (/opt/conda/lib/python3.8/site-packages)\u001b[0m\n",
+ "Installing collected packages: sortedcontainers, pygtrie, hypothesis, pyctcdecode, kenlm\n",
+ "\u001b[33mWARNING: Ignoring invalid distribution -atasets (/opt/conda/lib/python3.8/site-packages)\u001b[0m\n",
+ "\u001b[33mWARNING: Ignoring invalid distribution -atasets (/opt/conda/lib/python3.8/site-packages)\u001b[0m\n",
+ "\u001b[33mWARNING: Ignoring invalid distribution -atasets (/opt/conda/lib/python3.8/site-packages)\u001b[0m\n",
+ "\u001b[33mWARNING: Ignoring invalid distribution -atasets (/opt/conda/lib/python3.8/site-packages)\u001b[0m\n",
+ "\u001b[33mWARNING: Ignoring invalid distribution -atasets (/opt/conda/lib/python3.8/site-packages)\u001b[0m\n",
+ "Successfully installed hypothesis-6.36.1 kenlm-0.0.0 pyctcdecode-0.3.0 pygtrie-2.4.2 sortedcontainers-2.4.0\n",
+ "\u001b[33mWARNING: Ignoring invalid distribution -atasets (/opt/conda/lib/python3.8/site-packages)\u001b[0m\n",
+ "\u001b[33mWARNING: Ignoring invalid distribution -atasets (/opt/conda/lib/python3.8/site-packages)\u001b[0m\n",
+ "\u001b[33mWARNING: Ignoring invalid distribution -atasets (/opt/conda/lib/python3.8/site-packages)\u001b[0m\n",
+ "\u001b[33mWARNING: You are using pip version 21.3.1; however, version 22.0.3 is available.\n",
+ "You should consider upgrading via the '/opt/conda/bin/python -m pip install --upgrade pip' command.\u001b[0m\n"
+ ]
+ }
+ ],
+ "source": [
+ "!pip install https://github.com/kpu/kenlm/archive/master.zip pyctcdecode"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ak_X8SHqzjOY"
+ },
+ "source": [
+ "For demonstration purposes, we have prepared a new model repository [patrickvonplaten/wav2vec2-base-100h-with-lm](https://huggingface.co./patrickvonplaten/wav2vec2-base-100h-with-lm) which contains the same Wav2Vec2 checkpoint but has an additional **4-gram** language model for English.\n",
+ "\n",
+ "Instead of using `Wav2Vec2Processor`, this time we use `Wav2Vec2ProcessorWithLM` to load the **4-gram** model in addition to the feature extractor and tokenizer."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "UydQ00uI0OEG"
+ },
+ "outputs": [],
+ "source": [
+ "from transformers import Wav2Vec2ProcessorWithLM\n",
+ "\n",
+ "processor = Wav2Vec2ProcessorWithLM.from_pretrained(\"patrickvonplaten/wav2vec2-base-100h-with-lm\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "cYZrzLQ02U4y"
+ },
+ "source": [
+ "In constrast to decoding the audio without language model, the processor now directly receives the model's output `logits` instead of the `argmax(logits)` (called `predicted_ids`) above. The reason is that when decoding with a language model, at each time step, the processor takes the probabilities of all possible output characters into account. Let's take a look at the dimension of the `logits` output."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "WJvldi0C5OaW",
+ "outputId": "ef6210a9-9652-4fc0-dc61-007dc85de5f5"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "torch.Size([1, 624, 32])"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "logits.shape"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ySU0i3oZ5Vdm"
+ },
+ "source": [
+ "We can see that the `logits` correspond to a sequence of 624 vectors each having 32 entries. Each of the 32 entries thereby stands for the logit probability of one of the 32 possible output characters of the model:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ },
+ "id": "rRz0_vm95i6E",
+ "outputId": "0b076acf-c839-4a66-8059-e7261e9f0024"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "string"
+ },
+ "text/plain": [
+ "\"' A B C D E F G H I J K L M N O P Q R S T U V W X Y Z |\""
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "\" \".join(sorted(processor.tokenizer.get_vocab()))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "u60UcdWL5ub-"
+ },
+ "source": [
+ "Intuitively, one can understand the decoding process of `Wav2Vec2ProcessorWithLM` as applying beam search through a matrix of size 624 $\\times$ 32 probabilities while leveraging the probabilities of the next letters as given by the *n-gram* language model.\n",
+ "\n",
+ "OK, let's run the decoding step again. `pyctcdecode` language model decoder does not automatically convert `torch` tensors to `numpy` so we'll have to convert them ourselves before."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ },
+ "id": "DFRgWyuUAZI4",
+ "outputId": "45b35f41-bc95-4297-e8a7-30d7c3980ac9"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "string"
+ },
+ "text/plain": [
+ "'he tells us that at this festive season of the year with christmas and rose beef looming before us similes drawn from eating and its results occur most readily to the mind'"
+ ]
+ },
+ "execution_count": 62,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "transcription = processor.batch_decode(logits.numpy()).text\n",
+ "transcription[0].lower()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "E4CiVIftDEMd"
+ },
+ "source": [
+ "Cool! Recalling the words `facebook/wav2vec2-base-100h` without a language model transcribed incorrectly previously, *e.g.*,\n",
+ "\n",
+ "> - *christmaus* vs. *christmas*\n",
+ "- *rose* vs. *roast*\n",
+ "- *simalyis* vs. *similes*\n",
+ "\n",
+ "we can take another look at the transcription of `facebook/wav2vec2-base-100h` **with** a 4-gram language model. 2 out of 3 errors are corrected; *christmas* and *similes* have been correctly transcribed.\n",
+ "\n",
+ "Interestingly, the incorrect transcription of *rose* persists. However, this should not surprise us very much. Decoding audio without a language model is much more prone to yield spelling mistakes, such as *christmaus* or *similes* (those words don't exist in the English language as far as I know). This is because the speech recognition system almost solely bases its prediction on the acoustic input it was given and not really on the language modeling context of previous and successive predicted letters ${}^1$. \n",
+ "If on the other hand, we add a language model, we can be fairly sure that the speech recognition system will heavily reduce spelling errors since a well-trained *n-gram* model will surely not predict a word that has spelling errors. But the word *rose* is a valid English word and therefore the 4-gram will predict this word with a probability that is not insignificant. \n",
+ "\n",
+ "The language model on its own most likely does favor the correct word *roast* since the word sequence *roast beef* is much more common in English than *rose beef*. Because the final transcription is derived from a weighted combination of `facebook/wav2vec2-base-100h` output probabilities and those of the *n-gram* language model, it is quite common to see incorrectly transcribed words such as *rose*.\n",
+ "\n",
+ "For more information on how you can tweak different parameters when decoding with `Wav2Vec2ProcessorWithLM`, please take a look at the official documentation [here](https://huggingface.co./docs/transformers/master/en/model_doc/wav2vec2#transformers.Wav2Vec2ProcessorWithLM.batch_decode).\n",
+ "\n",
+ "---\n",
+ "${}^1$ Some research shows that a model such as `facebook/wav2vec2-base-100h` - when sufficiently large and trained on enough data - can learn language modeling dependencies between intermediate audio representations similar to a language model.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "9FKW9cqzKMMo"
+ },
+ "source": [
+ "Great, now that you have seen the advantages adding an *n-gram* language model can bring, let's dive into how to create an *n-gram* and `Wav2Vec2ProcessorWithLM` from scratch."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "QEz599PfmPeG"
+ },
+ "source": [
+ "## **2. Getting data for your language model**\n",
+ "\n",
+ "A language model that is useful for a speech recognition system should support the acoustic model, *e.g.* Wav2Vec2, in predicting the next word (or token, letter) and therefore model the following distribution:\n",
+ "\n",
+ "$\\mathbf{P}(w_n | \\mathbf{w}_0^{t-1})$ with $w_n$ being the next word and $\\mathbf{w}_0^{t-1}$ being the sequence of all previous words since the beginning of the utterance. Simply said, the language model should be good at predicting the next word given all previously transcribed words regardless of the audio input given to the speech recognition system.\n",
+ "\n",
+ "As always a language model is only as good as the data it is trained on. In the case of speech recognition, we should therefore ask ourselves for what kind of data, the speech recognition will be used for: *conversations*, *audiobooks*, *movies*, *speeches*, *, etc*, ...?\n",
+ "\n",
+ "The language model should be good at modeling language that corresponds to the \n",
+ "target transcriptions of the speech recognition system. \n",
+ "For demonstration purposes, we assume here that we have fine-tuned a pre-trained [`facebook/wav2vec2-xls-r-300m`](https://huggingface.co./facebook/wav2vec2-xls-r-300m) on [Common Voice 7](https://huggingface.co./datasets/mozilla-foundation/common_voice_7_0) in Swedish. The fine-tuned checkpoint can \n",
+ "be found [here](https://huggingface.co./hf-test/xls-r-300m-sv).\n",
+ "Common Voice 7 is a relatively crowd-sourced read-out audio dataset and we will evaluate the model on its test data.\n",
+ "\n",
+ "Let's now look for suitable text data on the Hugging Face Hub. We search all datasets for those [that contain Swedish data](https://huggingface.co./datasets?languages=languages:sv&sort=downloads). \n",
+ "Browsing a bit through the datasets, we are looking for a dataset that is similar to Common Voice's read-out audio data. The obvious choices of [oscar](https://huggingface.co./datasets/oscar) and [mc4](https://huggingface.co./datasets/mc4) might not be the most suitable here because they:\n",
+ "\n",
+ "- are generated from crawling the web, which might not be very clean and correspond well to spoken language\n",
+ "- require a lot of pre-processing\n",
+ "- are very large which is not ideal for demonstration purposes here 😉\n",
+ "\n",
+ "A dataset that seems sensible here and which is relatively clean and easy to pre-process is [europarl_bilingual](https://huggingface.co./datasets/europarl_bilingual) as it's a dataset that is based on discussions and talks of the European parliament. It should therefore be relatively clean and correspond well to read-out audio data. The dataset is originally designed for machine translation and can therefore only be accessed in translation pairs. We will only extract the text of the target language, Swedish (`sv`), from the *English-to-Swedish* translations."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "id": "chZw03lUVAnr"
+ },
+ "outputs": [],
+ "source": [
+ "target_lang=\"en\" # change to your target lang"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "cOLruPJsVS98"
+ },
+ "source": [
+ "Let's download the data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 255,
+ "referenced_widgets": [
+ "c5eb721fe1b841168a49b5bc22435791",
+ "b9861ef1c3534e90b472be9ed8862f17",
+ "77db336868d84805937445c51ea72df4",
+ "fb4d2faef4da4dc0ae1203f9376053af",
+ "edbdbc0a82854bde92e5abf6c8f87534",
+ "eb4ed31888734fe39dd96f9642abd38b",
+ "d050daf64b5944fdad48b963ad482f7c",
+ "88e5417fad3d442585c799cfd9d2f8f4",
+ "5a0353a8a1be47a1a42f1e05eb72eb68",
+ "40a6127b87464cddba87f6c97c308594",
+ "c1931c4022d84d28815d460f72ef908b",
+ "880b6bbcaad54eb8ba377377b1858ffd",
+ "d37fb9ad76e64370a426f306919bedd0",
+ "850edc7115a34dde9ddf6e36b5f1e8dd",
+ "3f7f23c3d40a4a629c26115bad8b19c6",
+ "ef6e382ddb8f475981b9f2ea8312bf46",
+ "c8b82acda88245b686d57b496466a3e2",
+ "ed723bd499654388b4717624baa2a288",
+ "dfcd53bb9a6f4cf3b6cdc84f40bbcd51",
+ "3752bd8127d140829a62045098151b37",
+ "d73548881b594fd88f074b947b07c408",
+ "1963287764bb48fa86c7437eb2dad75b",
+ "95d736dd67b849ebae4433bff689cd06",
+ "8584eaf09efb49c995f5a2b1c25fe089",
+ "a377ec0ebad0485987b93ae5212ab19f",
+ "00b92ed648e94e8b975f4c66cc329c19",
+ "5f132d8f475345f7acef6a4996a026cf",
+ "90ec52eebee44eeea4cdead5bf665b67",
+ "16a8075896df4ca181a70973a59d1fd7",
+ "4e562a18f1a0471ea0ebd4007a2d674e",
+ "e3dafae56ffb4a5cbc84d80bc7f30c87",
+ "9681133982cc42048815e2c30e1b4436",
+ "be4fd6ba2c024224a10571a3a2c44637",
+ "73e64b85117b4bc69d013fad313da9c6",
+ "678d73e72aa941b2b1f3d1e85ed0d952",
+ "5bb04fe5c73b4bc09f1aa05952244413",
+ "d4adf3cee88e4482b20f9f0d3b87a36a",
+ "0f21362b91214406a29a82fcffc34bf7",
+ "f692fa3e8bad4f359baaff49a70d5cd5",
+ "3717640fa6e740c6a73e061fd9cd59e8",
+ "6433d64ddce540f3acacb9990c6f8b20",
+ "1b4a50a4aeea429795ff12ccf7e25ecc",
+ "d8d482db758d4052afe8019ba59d816a",
+ "a0ec12647b784b2d94a298db506e1ca4"
+ ]
+ },
+ "id": "IrAzjWc3Ok2l",
+ "outputId": "591b75dd-b38f-4129-a748-21fefa0cf7b6"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "c5eb721fe1b841168a49b5bc22435791",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading: 0%| | 0.00/2.08k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "880b6bbcaad54eb8ba377377b1858ffd",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading: 0%| | 0.00/7.41k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Using custom data configuration ar-en-lang1=ar,lang2=en\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Downloading and preparing dataset news_commentary/ar-en (download: 23.57 MiB, generated: 76.92 MiB, post-processed: Unknown size, total: 100.49 MiB) to /root/.cache/huggingface/datasets/news_commentary/ar-en-lang1=ar,lang2=en/0.0.0/cfab724ce975dc2da51cdae45302389860badc88b74db8570d561ced6004f8b4...\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "95d736dd67b849ebae4433bff689cd06",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading: 0%| | 0.00/24.7M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "73e64b85117b4bc69d013fad313da9c6",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "0 examples [00:00, ? examples/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Dataset news_commentary downloaded and prepared to /root/.cache/huggingface/datasets/news_commentary/ar-en-lang1=ar,lang2=en/0.0.0/cfab724ce975dc2da51cdae45302389860badc88b74db8570d561ced6004f8b4. Subsequent calls will reuse this data.\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "Dataset({\n",
+ " features: ['id', 'translation'],\n",
+ " num_rows: 83187\n",
+ "})"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from datasets import load_dataset\n",
+ "\n",
+ "dataset = load_dataset(\"news_commentary\", lang1=\"ar\", lang2=target_lang, split=\"train\")\n",
+ "dataset"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "9eNZuRBxqpo4"
+ },
+ "source": [
+ "We see that the data is quite large - it has over a million translations. Since it's only text data, it should be relatively easy to process though.\n",
+ "\n",
+ "Next, let's look at how the data was preprocessed when training the fine-tuned *XLS-R* checkpoint in Swedish. Looking at the [`run.sh` file](https://huggingface.co./hf-test/xls-r-300m-sv/blob/main/run.sh), we can see that the following characters were removed from the official transcriptions:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "GGkF904aNoJG"
+ },
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "id": "xu_ijSi7X4C4"
+ },
+ "outputs": [],
+ "source": [
+ "chars_to_ignore_regex = '[,?.!\\-\\;\\:\\\"“%‘”�—’…–]' # change to the ignored characters of your fine-tuned model"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "pqSMaIG-rLKG"
+ },
+ "source": [
+ "Let's do the same here so that the alphabet of our language model matches the one of the fine-tuned acoustic checkpoints.\n",
+ "\n",
+ "We can write a single map function to extract the Swedish text and process it right away."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "id": "WFIU8e8AR3tW"
+ },
+ "outputs": [],
+ "source": [
+ "import re\n",
+ "alpha_numerical = \"[0-9A-Za-z]\"\n",
+ "def extract_text(batch):\n",
+ " text = batch[\"translation\"]['ar']\n",
+ " batch[\"text\"] = re.sub(chars_to_ignore_regex, \"\", text.lower())\n",
+ " batch[\"text\"] = re.sub(alpha_numerical, \"\",batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"[—]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"[_]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"[«]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"[»]\", '', batch[\"text\"])\n",
+ " # batch[\"sentence\"] = re.sub(\"['ِ]\", '', batch[\"sentence\"])\n",
+ " batch[\"text\"] = re.sub(\"[،]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"[؛]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"[؟]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"['ۖ]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"[ـ]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"[☭]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"[…]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"['ۗ]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"[،]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"[؛]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"['ۘ]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"['ۚ]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"['ۛ]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"['ً]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"['ٌ]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"['ٍ]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"['ّ]\", '', batch[\"text\"])\n",
+ " batch[\"text\"] = re.sub(\"['ٰ]\", '', batch[\"text\"])\n",
+ " return batch"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "pJ1HrbGBrdUT"
+ },
+ "source": [
+ "Let's apply the `.map()` function. This should take roughly 5 minutes."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 118,
+ "referenced_widgets": [
+ "9c52b398782b40cb99a35d2bf5f079b8",
+ "3137ac50cbae426e9031cc79d9c3443b",
+ "86a4292b30ec47c0a875ada683c00886",
+ "ac78dc635d2448dea7fdba88d7df067f",
+ "d4595639599e4233856655c8fe255deb",
+ "72b8ff227663406f88069ed51847447d",
+ "a8604194873b4defadb70736fe913d6e",
+ "3dcfd3664dab4bc39dda69085533423d",
+ "04b1c8bb81894178ba1e3e6f63f30a2a",
+ "6997e0504b9d4cd6b2f16f41ce144d3c",
+ "2d23fb97540040bda093ff13dccaa713"
+ ]
+ },
+ "id": "fniFT4aARiBf",
+ "outputId": "3a2411cf-ce8a-4be9-d3d5-c2673e859b5a"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "9c52b398782b40cb99a35d2bf5f079b8",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "0ex [00:00, ?ex/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "Dataset({\n",
+ " features: ['text'],\n",
+ " num_rows: 83187\n",
+ "})"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dataset = dataset.map(extract_text, remove_columns=dataset.column_names)\n",
+ "dataset"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "a-S979j9rh43"
+ },
+ "source": [
+ "Great. Our dataset is already finished. Let's upload it to the Hub so that we can inspect and reuse it better.\n",
+ "\n",
+ "You can log in by executing the following cell."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 387,
+ "referenced_widgets": [
+ "5d00bf261e08411ab9c1a6127723f344",
+ "dc353060f608487fb9a9bf6e71d4c1c1",
+ "e08f20628d6e4553a05a30ede0cd4f5c",
+ "fc9eb8784a9a4636a79e6f538e599727",
+ "be93f4ff43ee4ba9b7930044e74c56dd",
+ "8c627fc877fa42e2aa2eeeafdc86a078",
+ "4e82782bab1b4871a2f499ac33a3b4cf",
+ "8533cf21f06b4fd289b60fe6cc9add37",
+ "962ef3466f0d4c779bf7f492956f8b77",
+ "f663c5883c7243578f59e274fe6e0000",
+ "e51ef080fb3d4189ab87e9c3a8030830",
+ "645415cf5a7f4c0482fb7944aa41da62",
+ "259afd5137d847a586716be29c5e26c6",
+ "4066d4a6efec4986b08b27ac23bf0248",
+ "cba65a7677624eaca65ab461e633dc0e",
+ "cf248ff18ac9473890936393caddf805",
+ "0fe85e546f7a435d922f318c70c72922"
+ ]
+ },
+ "id": "JHTeonOGXiGq",
+ "outputId": "279caffa-a449-4a56-e025-ba6905e623c7"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "aaed15ccb17245848ce86a6182bae26c",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "VBox(children=(HTML(value='\\n line 1.)\n",
+ "debconf: falling back to frontend: Readline\n",
+ "debconf: unable to initialize frontend: Readline\n",
+ "debconf: (This frontend requires a controlling tty.)\n",
+ "debconf: falling back to frontend: Teletype\n",
+ "dpkg-preconfigure: unable to re-open stdin: \n",
+ "Selecting previously unselected package libeigen3-dev.\n",
+ "(Reading database ... 155113 files and directories currently installed.)\n",
+ "Preparing to unpack .../libeigen3-dev_3.3.4-4_all.deb ...\n",
+ "Unpacking libeigen3-dev (3.3.4-4) ...\n",
+ "Setting up libeigen3-dev (3.3.4-4) ...\n"
+ ]
+ }
+ ],
+ "source": [
+ "!sudo apt-get install build-essential cmake libboost-system-dev libboost-thread-dev libboost-program-options-dev libboost-test-dev libeigen3-dev zlib1g-dev libbz2-dev liblzma-dev"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "JzHiJPg6OqvA"
+ },
+ "source": [
+ "before downloading and unpacking the KenLM repo."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "J8mm4ExzqIaZ",
+ "outputId": "3977f0d0-f360-40cf-b59e-230abd70db44"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "--2022-02-05 04:53:46-- https://kheafield.com/code/kenlm.tar.gz\n",
+ "Resolving kheafield.com (kheafield.com)... 35.196.63.85\n",
+ "Connecting to kheafield.com (kheafield.com)|35.196.63.85|:443... connected.\n",
+ "HTTP request sent, awaiting response... 200 OK\n",
+ "Length: 491090 (480K) [application/x-gzip]\n",
+ "Saving to: ‘STDOUT’\n",
+ "\n",
+ "- 100%[===================>] 479.58K 1.67MB/s in 0.3s \n",
+ "\n",
+ "2022-02-05 04:53:47 (1.67 MB/s) - written to stdout [491090/491090]\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "!wget -O - https://kheafield.com/code/kenlm.tar.gz | tar xz"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "TKpjSxiDPKK-"
+ },
+ "source": [
+ "KenLM is written in C++, so we'll make use of `cmake` to build the binaries."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "MS4mqMyZqVAI",
+ "outputId": "8fc4a4f2-8b08-4526-fabf-bbd882038c29"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "-- The C compiler identification is GNU 7.5.0\n",
+ "-- The CXX compiler identification is GNU 7.5.0\n",
+ "-- Check for working C compiler: /usr/bin/cc\n",
+ "-- Check for working C compiler: /usr/bin/cc -- works\n",
+ "-- Detecting C compiler ABI info\n",
+ "-- Detecting C compiler ABI info - done\n",
+ "-- Detecting C compile features\n",
+ "-- Detecting C compile features - done\n",
+ "-- Check for working CXX compiler: /usr/bin/c++\n",
+ "-- Check for working CXX compiler: /usr/bin/c++ -- works\n",
+ "-- Detecting CXX compiler ABI info\n",
+ "-- Detecting CXX compiler ABI info - done\n",
+ "-- Detecting CXX compile features\n",
+ "-- Detecting CXX compile features - done\n",
+ "-- Looking for pthread.h\n",
+ "-- Looking for pthread.h - found\n",
+ "-- Looking for pthread_create\n",
+ "-- Looking for pthread_create - not found\n",
+ "-- Looking for pthread_create in pthreads\n",
+ "-- Looking for pthread_create in pthreads - not found\n",
+ "-- Looking for pthread_create in pthread\n",
+ "-- Looking for pthread_create in pthread - found\n",
+ "-- Found Threads: TRUE \n",
+ "-- Boost version: 1.65.1\n",
+ "-- Found the following Boost libraries:\n",
+ "-- program_options\n",
+ "-- system\n",
+ "-- thread\n",
+ "-- unit_test_framework\n",
+ "-- chrono\n",
+ "-- date_time\n",
+ "-- atomic\n",
+ "-- Check if compiler accepts -pthread\n",
+ "-- Check if compiler accepts -pthread - yes\n",
+ "-- Found ZLIB: /usr/lib/x86_64-linux-gnu/libz.so (found version \"1.2.11\") \n",
+ "-- Found BZip2: /usr/lib/x86_64-linux-gnu/libbz2.so (found version \"1.0.6\") \n",
+ "-- Looking for BZ2_bzCompressInit\n",
+ "-- Looking for BZ2_bzCompressInit - found\n",
+ "-- Looking for lzma_auto_decoder in /usr/lib/x86_64-linux-gnu/liblzma.so\n",
+ "-- Looking for lzma_auto_decoder in /usr/lib/x86_64-linux-gnu/liblzma.so - found\n",
+ "-- Looking for lzma_easy_encoder in /usr/lib/x86_64-linux-gnu/liblzma.so\n",
+ "-- Looking for lzma_easy_encoder in /usr/lib/x86_64-linux-gnu/liblzma.so - found\n",
+ "-- Looking for lzma_lzma_preset in /usr/lib/x86_64-linux-gnu/liblzma.so\n",
+ "-- Looking for lzma_lzma_preset in /usr/lib/x86_64-linux-gnu/liblzma.so - found\n",
+ "-- Found LibLZMA: /usr/include (found version \"5.2.2\") \n",
+ "-- Found OpenMP_C: -fopenmp (found version \"4.5\") \n",
+ "-- Found OpenMP_CXX: -fopenmp (found version \"4.5\") \n",
+ "-- Found OpenMP: TRUE (found version \"4.5\") \n",
+ "-- Configuring done\n",
+ "-- Generating done\n",
+ "-- Build files have been written to: /content/kenlm/build\n",
+ "\u001b[35m\u001b[1mScanning dependencies of target kenlm_util\u001b[0m\n",
+ "[ 1%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/bignum-dtoa.cc.o\u001b[0m\n",
+ "[ 2%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/bignum.cc.o\u001b[0m\n",
+ "[ 3%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/cached-powers.cc.o\u001b[0m\n",
+ "[ 4%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/diy-fp.cc.o\u001b[0m\n",
+ "[ 5%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/double-conversion.cc.o\u001b[0m\n",
+ "[ 6%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/fast-dtoa.cc.o\u001b[0m\n",
+ "[ 7%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/fixed-dtoa.cc.o\u001b[0m\n",
+ "[ 8%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/strtod.cc.o\u001b[0m\n",
+ "[ 9%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/chain.cc.o\u001b[0m\n",
+ "[ 10%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/count_records.cc.o\u001b[0m\n",
+ "[ 11%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/io.cc.o\u001b[0m\n",
+ "[ 12%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/line_input.cc.o\u001b[0m\n",
+ "[ 13%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/multi_progress.cc.o\u001b[0m\n",
+ "[ 14%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/rewindable_stream.cc.o\u001b[0m\n",
+ "[ 15%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/bit_packing.cc.o\u001b[0m\n",
+ "[ 16%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/ersatz_progress.cc.o\u001b[0m\n",
+ "[ 17%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/exception.cc.o\u001b[0m\n",
+ "[ 18%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/file.cc.o\u001b[0m\n",
+ "[ 19%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/file_piece.cc.o\u001b[0m\n",
+ "[ 20%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/float_to_string.cc.o\u001b[0m\n",
+ "[ 21%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/integer_to_string.cc.o\u001b[0m\n",
+ "[ 22%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/mmap.cc.o\u001b[0m\n",
+ "[ 23%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/murmur_hash.cc.o\u001b[0m\n",
+ "[ 25%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/parallel_read.cc.o\u001b[0m\n",
+ "[ 26%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/pool.cc.o\u001b[0m\n",
+ "[ 27%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/read_compressed.cc.o\u001b[0m\n",
+ "[ 28%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/scoped.cc.o\u001b[0m\n",
+ "[ 29%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/spaces.cc.o\u001b[0m\n",
+ "[ 31%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/usage.cc.o\u001b[0m\n",
+ "[ 31%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/string_piece.cc.o\u001b[0m\n",
+ "[ 32%] \u001b[32m\u001b[1mLinking CXX static library ../lib/libkenlm_util.a\u001b[0m\n",
+ "[ 32%] Built target kenlm_util\n",
+ "\u001b[35m\u001b[1mScanning dependencies of target probing_hash_table_benchmark\u001b[0m\n",
+ "\u001b[35m\u001b[1mScanning dependencies of target kenlm\u001b[0m\n",
+ "[ 33%] \u001b[32mBuilding CXX object util/CMakeFiles/probing_hash_table_benchmark.dir/probing_hash_table_benchmark_main.cc.o\u001b[0m\n",
+ "[ 34%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/bhiksha.cc.o\u001b[0m\n",
+ "[ 35%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/binary_format.cc.o\u001b[0m\n",
+ "[ 36%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/config.cc.o\u001b[0m\n",
+ "[ 37%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/lm_exception.cc.o\u001b[0m\n",
+ "[ 38%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/model.cc.o\u001b[0m\n",
+ "[ 39%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/quantize.cc.o\u001b[0m\n",
+ "[ 40%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/read_arpa.cc.o\u001b[0m\n",
+ "[ 41%] \u001b[32m\u001b[1mLinking CXX executable ../bin/probing_hash_table_benchmark\u001b[0m\n",
+ "[ 41%] Built target probing_hash_table_benchmark\n",
+ "\u001b[35m\u001b[1mScanning dependencies of target kenlm_filter\u001b[0m\n",
+ "[ 42%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/kenlm_filter.dir/arpa_io.cc.o\u001b[0m\n",
+ "[ 43%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/search_hashed.cc.o\u001b[0m\n",
+ "[ 44%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/kenlm_filter.dir/phrase.cc.o\u001b[0m\n",
+ "[ 45%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/search_trie.cc.o\u001b[0m\n",
+ "[ 46%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/kenlm_filter.dir/vocab.cc.o\u001b[0m\n",
+ "[ 47%] \u001b[32m\u001b[1mLinking CXX static library ../../lib/libkenlm_filter.a\u001b[0m\n",
+ "[ 47%] Built target kenlm_filter\n",
+ "[ 48%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/sizes.cc.o\u001b[0m\n",
+ "[ 50%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/trie.cc.o\u001b[0m\n",
+ "[ 51%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/trie_sort.cc.o\u001b[0m\n",
+ "[ 52%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/value_build.cc.o\u001b[0m\n",
+ "[ 53%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/virtual_interface.cc.o\u001b[0m\n",
+ "[ 54%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/vocab.cc.o\u001b[0m\n",
+ "[ 55%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/common/model_buffer.cc.o\u001b[0m\n",
+ "[ 56%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/common/print.cc.o\u001b[0m\n",
+ "[ 57%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/common/renumber.cc.o\u001b[0m\n",
+ "[ 58%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/common/size_option.cc.o\u001b[0m\n",
+ "[ 59%] \u001b[32m\u001b[1mLinking CXX static library ../lib/libkenlm.a\u001b[0m\n",
+ "[ 59%] Built target kenlm\n",
+ "\u001b[35m\u001b[1mScanning dependencies of target fragment\u001b[0m\n",
+ "\u001b[35m\u001b[1mScanning dependencies of target build_binary\u001b[0m\n",
+ "[ 60%] \u001b[32mBuilding CXX object lm/CMakeFiles/fragment.dir/fragment_main.cc.o\u001b[0m\n",
+ "[ 61%] \u001b[32mBuilding CXX object lm/CMakeFiles/build_binary.dir/build_binary_main.cc.o\u001b[0m\n",
+ "[ 62%] \u001b[32m\u001b[1mLinking CXX executable ../bin/fragment\u001b[0m\n",
+ "[ 62%] Built target fragment\n",
+ "\u001b[35m\u001b[1mScanning dependencies of target kenlm_benchmark\u001b[0m\n",
+ "[ 63%] \u001b[32m\u001b[1mLinking CXX executable ../bin/build_binary\u001b[0m\n",
+ "[ 64%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm_benchmark.dir/kenlm_benchmark_main.cc.o\u001b[0m\n",
+ "[ 64%] Built target build_binary\n",
+ "\u001b[35m\u001b[1mScanning dependencies of target query\u001b[0m\n",
+ "[ 65%] \u001b[32mBuilding CXX object lm/CMakeFiles/query.dir/query_main.cc.o\u001b[0m\n",
+ "[ 66%] \u001b[32m\u001b[1mLinking CXX executable ../bin/query\u001b[0m\n",
+ "[ 66%] Built target query\n",
+ "\u001b[35m\u001b[1mScanning dependencies of target kenlm_builder\u001b[0m\n",
+ "[ 67%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/adjust_counts.cc.o\u001b[0m\n",
+ "[ 68%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/corpus_count.cc.o\u001b[0m\n",
+ "[ 69%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/initial_probabilities.cc.o\u001b[0m\n",
+ "[ 70%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/interpolate.cc.o\u001b[0m\n",
+ "[ 71%] \u001b[32m\u001b[1mLinking CXX executable ../bin/kenlm_benchmark\u001b[0m\n",
+ "[ 71%] Built target kenlm_benchmark\n",
+ "\u001b[35m\u001b[1mScanning dependencies of target phrase_table_vocab\u001b[0m\n",
+ "[ 72%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/phrase_table_vocab.dir/phrase_table_vocab_main.cc.o\u001b[0m\n",
+ "[ 73%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/output.cc.o\u001b[0m\n",
+ "[ 75%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/phrase_table_vocab\u001b[0m\n",
+ "[ 75%] Built target phrase_table_vocab\n",
+ "\u001b[35m\u001b[1mScanning dependencies of target filter\u001b[0m\n",
+ "[ 76%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/filter.dir/filter_main.cc.o\u001b[0m\n",
+ "[ 77%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/pipeline.cc.o\u001b[0m\n",
+ "[ 78%] \u001b[32m\u001b[1mLinking CXX static library ../../lib/libkenlm_builder.a\u001b[0m\n",
+ "[ 78%] Built target kenlm_builder\n",
+ "\u001b[35m\u001b[1mScanning dependencies of target kenlm_interpolate\u001b[0m\n",
+ "[ 79%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/backoff_reunification.cc.o\u001b[0m\n",
+ "[ 80%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/filter\u001b[0m\n",
+ "[ 81%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/bounded_sequence_encoding.cc.o\u001b[0m\n",
+ "[ 81%] Built target filter\n",
+ "\u001b[35m\u001b[1mScanning dependencies of target count_ngrams\u001b[0m\n",
+ "[ 82%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/count_ngrams.dir/count_ngrams_main.cc.o\u001b[0m\n",
+ "[ 83%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/merge_probabilities.cc.o\u001b[0m\n",
+ "[ 84%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/merge_vocab.cc.o\u001b[0m\n",
+ "[ 85%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/normalize.cc.o\u001b[0m\n",
+ "[ 86%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/count_ngrams\u001b[0m\n",
+ "[ 87%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/pipeline.cc.o\u001b[0m\n",
+ "[ 87%] Built target count_ngrams\n",
+ "\u001b[35m\u001b[1mScanning dependencies of target lmplz\u001b[0m\n",
+ "[ 88%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/lmplz.dir/lmplz_main.cc.o\u001b[0m\n",
+ "[ 89%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/lmplz\u001b[0m\n",
+ "[ 89%] Built target lmplz\n",
+ "[ 90%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/split_worker.cc.o\u001b[0m\n",
+ "[ 91%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/tune_derivatives.cc.o\u001b[0m\n",
+ "[ 92%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/tune_instances.cc.o\u001b[0m\n",
+ "[ 93%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/tune_weights.cc.o\u001b[0m\n",
+ "[ 94%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/universal_vocab.cc.o\u001b[0m\n",
+ "[ 95%] \u001b[32m\u001b[1mLinking CXX static library ../../lib/libkenlm_interpolate.a\u001b[0m\n",
+ "[ 95%] Built target kenlm_interpolate\n",
+ "\u001b[35m\u001b[1mScanning dependencies of target streaming_example\u001b[0m\n",
+ "\u001b[35m\u001b[1mScanning dependencies of target interpolate\u001b[0m\n",
+ "[ 96%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/streaming_example.dir/streaming_example_main.cc.o\u001b[0m\n",
+ "[ 97%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/interpolate.dir/interpolate_main.cc.o\u001b[0m\n",
+ "[ 98%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/interpolate\u001b[0m\n",
+ "[ 98%] Built target interpolate\n",
+ "[100%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/streaming_example\u001b[0m\n",
+ "[100%] Built target streaming_example\n",
+ "build_binary fragment\t lmplz\t\t\t query\n",
+ "count_ngrams interpolate phrase_table_vocab\t streaming_example\n",
+ "filter\t kenlm_benchmark probing_hash_table_benchmark\n"
+ ]
+ }
+ ],
+ "source": [
+ "!mkdir kenlm/build && cd kenlm/build && cmake .. && make -j2\n",
+ "!ls kenlm/build/bin"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "N9D7JvVuPTOz"
+ },
+ "source": [
+ "Great, as we can see, the executable functions have successfully been built under `kenlm/build/bin/`.\n",
+ "\n",
+ "KenLM by default computes an *n-gram* with [Kneser-Ney smooting](https://en.wikipedia.org/wiki/Kneser%E2%80%93Ney_smoothing). All text data used to create the *n-gram* is expected to be stored in a text file.\n",
+ "We download our dataset and save it as a `.txt` file."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 217,
+ "referenced_widgets": [
+ "c600c14d43bc4ce087292ab7ecba7b82",
+ "b56947879e764c59a50dd8029f7ba024",
+ "4390697c0a3c4b8e99981c3b6c481730",
+ "5a582babdfcc4069b751ed8873c75d57",
+ "3055fb1d66bc44c2af2151833de0c08f",
+ "6ae456c84fd047388640754082802eca",
+ "84a82690b68f4bf284f4f6808db41efb",
+ "eda966270a8042f68f9e16db670f13fe",
+ "fa0aeb1c2ce149c8bfded42526893694",
+ "d8e87a5cbcbe421b9f1723280db3b821",
+ "3da1354f62f94f8eb38f6f64b089b600",
+ "4b332599027046f881e5166a43a0ea06",
+ "bd24df614b3746909a7b4ede68615ff5",
+ "da9014bd6d9f452a9af2e3d7019bcc62",
+ "7a8bc9fd2b91477f95943f2658bcb6be",
+ "6078c7718ef041a4964a6a6638c8ebc4",
+ "bc2c75c27ed84a8394ec2e88b642f39d",
+ "576a3745924e49148323cf37fdf23501",
+ "406bd04592b4428db058aed30b1ea657",
+ "f6d9a4de2f4b43baaddd1860f39603d5",
+ "d9d8f94214874beab17893c14f34029d",
+ "340ffa930c5948c0a906e83900835078",
+ "3acc38512cf247d1b642c35c7be84afc",
+ "881a35658b1442eda6fcf46249363a44",
+ "e91a935aedfd4dd9a21b70494ff6f542",
+ "d1b8438266994972a4be7bd20bcb7fc3",
+ "42e00e6e6e4b4b679c74b1818024cb43",
+ "cb4012a29b144b0cb252c1976f5cd275",
+ "45215ac3e54a4cb08e83fa03b4d49976",
+ "8e83e3877fb04eb6a158adceb983a85c",
+ "4b2d00e46a7a4fe896703a52c010aaa6",
+ "cbcc10764b604098951e6371fbd6f480",
+ "cb90869a6bc248008e2bc31e068d68d0",
+ "a8c9482eab0f4738b4f45c045a0a1074",
+ "cf8518414b484434a82b5933f5709cad",
+ "1a217cc1d9bf49bdaac6e63392acbc48",
+ "803ecbcbf8bd4292a0a0eb84466da050",
+ "b8983f9825a74d9287ba38da0fa2fd49",
+ "9828498cd0ae4df2886e8b7ec89a897b",
+ "56a885f1a3ee41558db5fc264d3c1b25",
+ "97050804252e4319be2ac806ccd5106b",
+ "ee8e480112e443c3b5646a36d0eb8d6b",
+ "7118b4831e714b63a0ca36458eb29426",
+ "ebaad2c1a3d24f318b9906d74ac20f04"
+ ]
+ },
+ "id": "VIgErMqApENm",
+ "outputId": "99038cf6-fe03-41e7-ace6-1b28e909ef21"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "c600c14d43bc4ce087292ab7ecba7b82",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading: 0%| | 0.00/1.67k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Using custom data configuration kingabzpro--ar_corpora_parliament_processed-7ee75506d2f6dcc4\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Downloading and preparing dataset news_commentary/ar-en (download: 24.36 MiB, generated: 50.92 MiB, post-processed: Unknown size, total: 75.28 MiB) to /root/.cache/huggingface/datasets/parquet/kingabzpro--ar_corpora_parliament_processed-7ee75506d2f6dcc4/0.0.0/0b6d5799bb726b24ad7fc7be720c170d8e497f575d02d47537de9a5bac074901...\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "4b332599027046f881e5166a43a0ea06",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/1 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "3acc38512cf247d1b642c35c7be84afc",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading: 0%| | 0.00/25.5M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "a8c9482eab0f4738b4f45c045a0a1074",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/1 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Dataset parquet downloaded and prepared to /root/.cache/huggingface/datasets/parquet/kingabzpro--ar_corpora_parliament_processed-7ee75506d2f6dcc4/0.0.0/0b6d5799bb726b24ad7fc7be720c170d8e497f575d02d47537de9a5bac074901. Subsequent calls will reuse this data.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from datasets import load_dataset\n",
+ "\n",
+ "username = \"kingabzpro\" # change to your username\n",
+ "\n",
+ "dataset = load_dataset(f\"{username}/ar_corpora_parliament_processed\", split=\"train\")\n",
+ "\n",
+ "with open(\"text.txt\", \"w\") as file:\n",
+ " file.write(\" \".join(dataset[\"text\"]))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "5SAQ0NszQyFC"
+ },
+ "source": [
+ "Now, we just have to run KenLM's `lmplz` command to build our *n-gram*, called `\"5gram.arpa\"`. As it's relatively common in speech recognition, we build a *5-gram* by passing the `-o 5` parameter.\n",
+ "For more information on the different *n-gram* LM that can be built \n",
+ "with KenLM, one can take a look at the [official website of KenLM](https://kheafield.com/code/kenlm/).\n",
+ "\n",
+ "Executing the command below might take a minute or so."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "_MdDNBlZrPOm",
+ "outputId": "a53b505f-1a16-4ba1-dbc0-82da856a06c6"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "=== 1/5 Counting and sorting n-grams ===\n",
+ "Reading /content/text.txt\n",
+ "----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
+ "tcmalloc: large alloc 1918697472 bytes == 0x55e8ed702000 @ 0x7f5cedcad1e7 0x55e8ec2557a2 0x55e8ec1f051e 0x55e8ec1cf2eb 0x55e8ec1bb066 0x7f5cebe46bf7 0x55e8ec1bcbaa\n",
+ "tcmalloc: large alloc 8953896960 bytes == 0x55e95fcd2000 @ 0x7f5cedcad1e7 0x55e8ec2557a2 0x55e8ec2447ca 0x55e8ec245208 0x55e8ec1cf308 0x55e8ec1bb066 0x7f5cebe46bf7 0x55e8ec1bcbaa\n",
+ "****************************************************************************************************\n",
+ "Unigram tokens 4953590 types 154929\n",
+ "=== 2/5 Calculating and sorting adjusted counts ===\n",
+ "Chain sizes: 1:1859148 2:1063013888 3:1993151104 4:3189041664 5:4650685952\n",
+ "tcmalloc: large alloc 4650688512 bytes == 0x55e8ed702000 @ 0x7f5cedcad1e7 0x55e8ec2557a2 0x55e8ec2447ca 0x55e8ec245208 0x55e8ec1cf8d7 0x55e8ec1bb066 0x7f5cebe46bf7 0x55e8ec1bcbaa\n",
+ "tcmalloc: large alloc 1993154560 bytes == 0x55ea421d4000 @ 0x7f5cedcad1e7 0x55e8ec2557a2 0x55e8ec2447ca 0x55e8ec245208 0x55e8ec1cfcdd 0x55e8ec1bb066 0x7f5cebe46bf7 0x55e8ec1bcbaa\n",
+ "tcmalloc: large alloc 3189047296 bytes == 0x55eb76098000 @ 0x7f5cedcad1e7 0x55e8ec2557a2 0x55e8ec2447ca 0x55e8ec245208 0x55e8ec1cfcdd 0x55e8ec1bb066 0x7f5cebe46bf7 0x55e8ec1bcbaa\n",
+ "Statistics:\n",
+ "1 154928 D1=0.626912 D2=1.01472 D3+=1.4089\n",
+ "2 1951043 D1=0.806457 D2=1.10655 D3+=1.36765\n",
+ "3 3808342 D1=0.910118 D2=1.23485 D3+=1.40391\n",
+ "4 4594632 D1=0.964725 D2=1.34642 D3+=1.45218\n",
+ "5 4848900 D1=0.98377 D2=1.45145 D3+=1.49256\n",
+ "Memory estimate for binary LM:\n",
+ "type MB\n",
+ "probing 324 assuming -p 1.5\n",
+ "probing 383 assuming -r models -p 1.5\n",
+ "trie 160 without quantization\n",
+ "trie 88 assuming -q 8 -b 8 quantization \n",
+ "trie 140 assuming -a 22 array pointer compression\n",
+ "trie 69 assuming -a 22 -q 8 -b 8 array pointer compression and quantization\n",
+ "=== 3/5 Calculating and sorting initial probabilities ===\n",
+ "Chain sizes: 1:1859136 2:31216688 3:76166840 4:110271168 5:135769200\n",
+ "----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
+ "####################################################################################################\n",
+ "=== 4/5 Calculating and writing order-interpolated probabilities ===\n",
+ "Chain sizes: 1:1859136 2:31216688 3:76166840 4:110271168 5:135769200\n",
+ "----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
+ "####################################################################################################\n",
+ "=== 5/5 Writing ARPA model ===\n",
+ "----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
+ "****************************************************************************************************\n",
+ "Name:lmplz\tVmPeak:14182240 kB\tVmRSS:2689208 kB\tRSSMax:2689364 kB\tuser:16.707\tsys:5.20417\tCPU:21.9112\treal:28.821\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "!kenlm/build/bin/lmplz -o 5 <\"text.txt\" > \"5gram.arpa\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "1_58ktqcTBYi"
+ },
+ "source": [
+ "Great, we have built a *5-gram* LM! Let's inspect the first couple of lines."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "TRnV8Miusl--",
+ "outputId": "81d9f405-8183-4011-bd1d-4eaf7811cdfd"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\\data\\\n",
+ "ngram 1=154928\n",
+ "ngram 2=1951043\n",
+ "ngram 3=3808342\n",
+ "ngram 4=4594632\n",
+ "ngram 5=4848900\n",
+ "\n",
+ "\\1-grams:\n",
+ "-6.2970614\t\t0\n",
+ "0\t\t-0.09341879\n",
+ "-4.2426977\tالذهب\t-0.2197705\n",
+ "-5.265963\tبعشرة\t-0.1773004\n",
+ "-4.3284874\tآلاف\t-0.29791862\n",
+ "-4.0686555\tدولار\t-0.33736664\n",
+ "-4.603849\tسان\t-0.4746134\n",
+ "-5.4108515\tفرانسيسكو\t-0.11966315\n",
+ "-2.7832785\tلم\t-0.62132126\n",
+ "-4.8193336\tيكن\t-0.12888719\n",
+ "-1.9863459\tمن\t-0.8163693\n",
+ "-4.8497424\tالسهل\t-0.14798915\n"
+ ]
+ }
+ ],
+ "source": [
+ "!head -20 5gram.arpa"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "l3jfwr2RTKPn"
+ },
+ "source": [
+ "There is a small problem that 🤗 Transformers will not be happy about later on.\n",
+ "The *5-gram* correctly includes a \"Unknown\" or ``, as well as a *begin-of-sentence*, `` token, but no *end-of-sentence*, ` ` token.\n",
+ "This sadly has to be corrected currently after the build.\n",
+ "\n",
+ "We can simply add the *end-of-sentence* token by adding the line `0 -0.11831701` below the *begin-of-sentence* token and increasing the `ngram 1` count by 1. Because the file has roughly 100 million lines, this command will take *ca.* 2 minutes."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "id": "_7u7dVPkvyRZ"
+ },
+ "outputs": [],
+ "source": [
+ "with open(\"5gram.arpa\", \"r\") as read_file, open(\"5gram_correct.arpa\", \"w\") as write_file:\n",
+ " has_added_eos = False\n",
+ " for line in read_file:\n",
+ " if not has_added_eos and \"ngram 1=\" in line:\n",
+ " count=line.strip().split(\"=\")[-1]\n",
+ " write_file.write(line.replace(f\"{count}\", f\"{int(count)+1}\"))\n",
+ " elif not has_added_eos and \"\" in line:\n",
+ " write_file.write(line)\n",
+ " write_file.write(line.replace(\"\", \" \"))\n",
+ " has_added_eos = True\n",
+ " else:\n",
+ " write_file.write(line)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "u9Y8uC3VW5vc"
+ },
+ "source": [
+ "Let's now inspect the corrected *5-gram*."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "YF1RSm-Pxst5",
+ "outputId": "cc06a4bd-d8cf-4ebc-9381-a1751c56b9df"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\\data\\\n",
+ "ngram 1=154929\n",
+ "ngram 2=1951043\n",
+ "ngram 3=3808342\n",
+ "ngram 4=4594632\n",
+ "ngram 5=4848900\n",
+ "\n",
+ "\\1-grams:\n",
+ "-6.2970614\t\t0\n",
+ "0\t\t-0.09341879\n",
+ "0\t \t-0.09341879\n",
+ "-4.2426977\tالذهب\t-0.2197705\n",
+ "-5.265963\tبعشرة\t-0.1773004\n",
+ "-4.3284874\tآلاف\t-0.29791862\n",
+ "-4.0686555\tدولار\t-0.33736664\n",
+ "-4.603849\tسان\t-0.4746134\n",
+ "-5.4108515\tفرانسيسكو\t-0.11966315\n",
+ "-2.7832785\tلم\t-0.62132126\n",
+ "-4.8193336\tيكن\t-0.12888719\n",
+ "-1.9863459\tمن\t-0.8163693\n"
+ ]
+ }
+ ],
+ "source": [
+ "!head -20 5gram_correct.arpa"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "m7NfKtyjXCiE"
+ },
+ "source": [
+ "Great, this looks better! We're done at this point and all that is left to do is to correctly integrate the `\"ngram\"` with [`pyctcdecode`](https://github.com/kensho-technologies/pyctcdecode) and 🤗 Transformers."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "kPImHXzDG8aH"
+ },
+ "source": [
+ "## **4. Combine an *n-gram* with Wav2Vec2**"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "kfZ7qYvMXfSV"
+ },
+ "source": [
+ "In a final step, we want to wrap the *5-gram* into a `Wav2Vec2ProcessorWithLM` object to make the *5-gram* boosted decoding as seamless as shown in Section 1.\n",
+ "We start by downloading the currently \"LM-less\" processor of [`xls-r-300m-sv`](https://huggingface.co./hf-test/xls-r-300m-sv)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 177,
+ "referenced_widgets": [
+ "698d0b728b4746e7b4a1bec8d9b475ba",
+ "a241dfe3267841b0bfe2ee227c6c1671",
+ "c80c54b2337e48c999e392b0c0daab65",
+ "9b59c5e85ea546bd936a53ff1ece936e",
+ "c6e0dc5b363246549548fd3764da0d28",
+ "41e30f39a9f34d65922779c7c2a8b98e",
+ "f7469fe429e74ab6971e41b17e2cb988",
+ "1ed0e06794dd4d74846f362e3c2c30a2",
+ "7c73c747977044d2a07363d4e8f4a1c5",
+ "adf6b751f48c4d6f9fa1cf3f218e4226",
+ "eb97689e4f4a46a9bd1691b56a2473d1",
+ "dbdd78ff6785419bb71db5ede51f339a",
+ "813507347dc949f5b639fefb58f3f462",
+ "c11cebba65ff40ae83681d434ebe47ea",
+ "4c2acf65c8df4e309e56763e263943c5",
+ "2bb63d36fe704a728665dff3d042647f",
+ "4058293c10c34ae2b0ff3446abac80a4",
+ "6df99d787b464e948be476dc9a68ada8",
+ "3e2fc0a577634ef2b691e685aa560b3c",
+ "d8e024f11dc9449ba30471f035633a20",
+ "d61e6c1731b540b6a03d794f8f6b2917",
+ "4dfa9c9cafc3404ead4f759164cc7a88",
+ "0f65e709ee974823a88f7819d28a6da9",
+ "2f3b99d85a6a495eb9861423a3a83ba0",
+ "220276fb03104701a48d025d1da9220e",
+ "209de0d4c6a94c9cb448f5d82011b941",
+ "e45502db00094658b19bd14876220095",
+ "f4334884958c4c179e8ed6d5adaea268",
+ "378d560bd8b341abbac878b85efe3b76",
+ "fdb329d825234d198d608c99eb1cfbf2",
+ "17f98118face47319366faf10404ac8e",
+ "eb7d7f396db041e183f204960ad6347d",
+ "cb1b5250e8ae4706a9d8dd0eb7abdc17",
+ "892e9754ffc24e71b20fd93751afbd0f",
+ "8edc330e2ea74e22804842e6b7b5d6c4",
+ "70ccf93519c34dfe91036ae605d2033d",
+ "7e26850063c546e181e11d96300d7cb4",
+ "33463ea837694d9c9b5a8fb8b5446678",
+ "1318e59ca3754f74931e8226e55534ad",
+ "e4a39d6afc82422b980f2ebfe601d4bc",
+ "573106ec254c424d92aa8f46f9b21059",
+ "0a8890bfad3f4fdca81a1c88e376af65",
+ "22d47e45145145c4b93af8815c72748c",
+ "55c04c986abd489fb443a0bf03c3c293",
+ "27251e4284a3416c94ae0ca49dc8dcb8",
+ "4a807eafb6af4015864e8e5daa2883af",
+ "be05ffe206b943b0adc5747b4b0bf5f7",
+ "4f5b99cea30146caad68f453156b2ecb",
+ "7b52991c22614e76a8dc34332b390eda",
+ "7e42a15a02784846979282c51886366b",
+ "497dba4eae904328999f653d66c2385f",
+ "6a61b52c2d504dcf9a4a4b5dce3d027c",
+ "14d54849b0e7466f926ae44c339ea6d5",
+ "572a608e21ef405f98730b1bc7658368",
+ "5bf72ebf0c364863b1cfc13aa6c14235"
+ ]
+ },
+ "id": "paV71gdAtkDC",
+ "outputId": "6d1b5a03-8f2f-4c99-f12f-99fa6b5eaa6a"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "698d0b728b4746e7b4a1bec8d9b475ba",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading: 0%| | 0.00/214 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "dbdd78ff6785419bb71db5ede51f339a",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading: 0%| | 0.00/181 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "0f65e709ee974823a88f7819d28a6da9",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading: 0%| | 0.00/2.02k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "892e9754ffc24e71b20fd93751afbd0f",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading: 0%| | 0.00/520 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "27251e4284a3416c94ae0ca49dc8dcb8",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading: 0%| | 0.00/85.0 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from transformers import AutoProcessor\n",
+ "\n",
+ "processor = AutoProcessor.from_pretrained(\"kingabzpro/wav2vec2-large-xlsr-300-arabic\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "sT0pDUmdYOx6"
+ },
+ "source": [
+ "Next, we extract the vocabulary of its tokenizer as it represents the `\"labels\"` of `pyctcdecode`'s `BeamSearchDecoder` class."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "id": "ZKwKxMoitoGS"
+ },
+ "outputs": [],
+ "source": [
+ "vocab_dict = processor.tokenizer.get_vocab()\n",
+ "sorted_vocab_dict = {k.lower(): v for k, v in sorted(vocab_dict.items(), key=lambda item: item[1])}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "o-jUBzFXYyCZ"
+ },
+ "source": [
+ "The `\"labels\"` and the previously built `5gram_correct.arpa` file is all that's needed to build the decoder. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "zTLzCLB2tQP7",
+ "outputId": "89d4a0f2-a19d-4355-dcf2-6795d82e7500"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Found entries of length > 1 in alphabet. This is unusual unless style is BPE, but the alphabet was not recognized as BPE type. Is this correct?\n",
+ "Unigrams and labels don't seem to agree.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from pyctcdecode import build_ctcdecoder\n",
+ "\n",
+ "decoder = build_ctcdecoder(\n",
+ " labels=list(sorted_vocab_dict.keys()),\n",
+ " kenlm_model_path=\"5gram_correct.arpa\",\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "IzJYQsSdZQ4-"
+ },
+ "source": [
+ "We can safely ignore the warning and all that is left to do now is to wrap the just created `decoder`, together with the processor's `tokenizer` and `feature_extractor` into a `Wav2Vec2ProcessorWithLM` class."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "id": "VBVf50EzZgAQ"
+ },
+ "outputs": [],
+ "source": [
+ "from transformers import Wav2Vec2ProcessorWithLM\n",
+ "\n",
+ "processor_with_lm = Wav2Vec2ProcessorWithLM(\n",
+ " feature_extractor=processor.feature_extractor,\n",
+ " tokenizer=processor.tokenizer,\n",
+ " decoder=decoder\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "enhS2VRNZ79c"
+ },
+ "source": [
+ "We want to directly upload the LM-boosted processor into \n",
+ "the model folder of [`xls-r-300m-sv`](https://huggingface.co./hf-test/xls-r-300m-sv) to have all relevant files in one place.\n",
+ "\n",
+ "Let's clone the repo, add the new decoder files and upload them afterward.\n",
+ "First, we need to install `git-lfs`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "BZZm3ECc5TMP",
+ "outputId": "3cb8115b-f9d0-455c-dfee-03d624530c6a"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Reading package lists... Done\n",
+ "Building dependency tree \n",
+ "Reading state information... Done\n",
+ "The following packages were automatically installed and are no longer required:\n",
+ " cuda-command-line-tools-10-0 cuda-command-line-tools-10-1\n",
+ " cuda-command-line-tools-11-0 cuda-compiler-10-0 cuda-compiler-10-1\n",
+ " cuda-compiler-11-0 cuda-cuobjdump-10-0 cuda-cuobjdump-10-1\n",
+ " cuda-cuobjdump-11-0 cuda-cupti-10-0 cuda-cupti-10-1 cuda-cupti-11-0\n",
+ " cuda-cupti-dev-11-0 cuda-documentation-10-0 cuda-documentation-10-1\n",
+ " cuda-documentation-11-0 cuda-documentation-11-1 cuda-gdb-10-0 cuda-gdb-10-1\n",
+ " cuda-gdb-11-0 cuda-gpu-library-advisor-10-0 cuda-gpu-library-advisor-10-1\n",
+ " cuda-libraries-10-0 cuda-libraries-10-1 cuda-libraries-11-0\n",
+ " cuda-memcheck-10-0 cuda-memcheck-10-1 cuda-memcheck-11-0 cuda-nsight-10-0\n",
+ " cuda-nsight-10-1 cuda-nsight-11-0 cuda-nsight-11-1 cuda-nsight-compute-10-0\n",
+ " cuda-nsight-compute-10-1 cuda-nsight-compute-11-0 cuda-nsight-compute-11-1\n",
+ " cuda-nsight-systems-10-1 cuda-nsight-systems-11-0 cuda-nsight-systems-11-1\n",
+ " cuda-nvcc-10-0 cuda-nvcc-10-1 cuda-nvcc-11-0 cuda-nvdisasm-10-0\n",
+ " cuda-nvdisasm-10-1 cuda-nvdisasm-11-0 cuda-nvml-dev-10-0 cuda-nvml-dev-10-1\n",
+ " cuda-nvml-dev-11-0 cuda-nvprof-10-0 cuda-nvprof-10-1 cuda-nvprof-11-0\n",
+ " cuda-nvprune-10-0 cuda-nvprune-10-1 cuda-nvprune-11-0 cuda-nvtx-10-0\n",
+ " cuda-nvtx-10-1 cuda-nvtx-11-0 cuda-nvvp-10-0 cuda-nvvp-10-1 cuda-nvvp-11-0\n",
+ " cuda-nvvp-11-1 cuda-samples-10-0 cuda-samples-10-1 cuda-samples-11-0\n",
+ " cuda-samples-11-1 cuda-sanitizer-11-0 cuda-sanitizer-api-10-1\n",
+ " cuda-toolkit-10-0 cuda-toolkit-10-1 cuda-toolkit-11-0 cuda-toolkit-11-1\n",
+ " cuda-tools-10-0 cuda-tools-10-1 cuda-tools-11-0 cuda-tools-11-1\n",
+ " cuda-visual-tools-10-0 cuda-visual-tools-10-1 cuda-visual-tools-11-0\n",
+ " cuda-visual-tools-11-1 default-jre dkms freeglut3 freeglut3-dev\n",
+ " keyboard-configuration libargon2-0 libcap2 libcryptsetup12\n",
+ " libdevmapper1.02.1 libfontenc1 libidn11 libip4tc0 libjansson4\n",
+ " libnvidia-cfg1-510 libnvidia-common-460 libnvidia-common-510\n",
+ " libnvidia-extra-510 libnvidia-fbc1-510 libnvidia-gl-510 libpam-systemd\n",
+ " libpolkit-agent-1-0 libpolkit-backend-1-0 libpolkit-gobject-1-0 libxfont2\n",
+ " libxi-dev libxkbfile1 libxmu-dev libxmu-headers libxnvctrl0 libxtst6\n",
+ " nsight-compute-2020.2.1 nsight-compute-2022.1.0 nsight-systems-2020.3.2\n",
+ " nsight-systems-2020.3.4 nsight-systems-2021.5.2 nvidia-dkms-510\n",
+ " nvidia-kernel-common-510 nvidia-kernel-source-510 nvidia-modprobe\n",
+ " nvidia-settings openjdk-11-jre policykit-1 policykit-1-gnome python3-xkit\n",
+ " screen-resolution-extra systemd systemd-sysv udev x11-xkb-utils\n",
+ " xserver-common xserver-xorg-core-hwe-18.04 xserver-xorg-video-nvidia-510\n",
+ "Use 'sudo apt autoremove' to remove them.\n",
+ "The following NEW packages will be installed:\n",
+ " git-lfs tree\n",
+ "0 upgraded, 2 newly installed, 0 to remove and 39 not upgraded.\n",
+ "Need to get 2,169 kB of archives.\n",
+ "After this operation, 7,767 kB of additional disk space will be used.\n",
+ "Get:1 http://archive.ubuntu.com/ubuntu bionic/universe amd64 git-lfs amd64 2.3.4-1 [2,129 kB]\n",
+ "Get:2 http://archive.ubuntu.com/ubuntu bionic/universe amd64 tree amd64 1.7.0-5 [40.7 kB]\n",
+ "Fetched 2,169 kB in 1s (1,526 kB/s)\n",
+ "debconf: unable to initialize frontend: Dialog\n",
+ "debconf: (No usable dialog-like program is installed, so the dialog based frontend cannot be used. at /usr/share/perl5/Debconf/FrontEnd/Dialog.pm line 76, <> line 2.)\n",
+ "debconf: falling back to frontend: Readline\n",
+ "debconf: unable to initialize frontend: Readline\n",
+ "debconf: (This frontend requires a controlling tty.)\n",
+ "debconf: falling back to frontend: Teletype\n",
+ "dpkg-preconfigure: unable to re-open stdin: \n",
+ "Selecting previously unselected package git-lfs.\n",
+ "(Reading database ... 155672 files and directories currently installed.)\n",
+ "Preparing to unpack .../git-lfs_2.3.4-1_amd64.deb ...\n",
+ "Unpacking git-lfs (2.3.4-1) ...\n",
+ "Selecting previously unselected package tree.\n",
+ "Preparing to unpack .../tree_1.7.0-5_amd64.deb ...\n",
+ "Unpacking tree (1.7.0-5) ...\n",
+ "Setting up tree (1.7.0-5) ...\n",
+ "Setting up git-lfs (2.3.4-1) ...\n",
+ "Processing triggers for man-db (2.8.3-2ubuntu0.1) ...\n"
+ ]
+ }
+ ],
+ "source": [
+ "!sudo apt-get install git-lfs tree"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "bvo2rUbfa367"
+ },
+ "source": [
+ "Cloning and uploading of modeling files can be done conveniently with the `huggingface_hub`'s `Repository` class. \n",
+ "\n",
+ "More information on how to use the `huggingface_hub` to upload any files, please take a look at the [official docs](https://huggingface.co./docs/hub/how-to-upstream)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 162,
+ "referenced_widgets": [
+ "49f7e6f289254977a2aafa2f1ee142db",
+ "8ee054a3be1a4c03a529940b1643f0d1",
+ "a0b28f4e2ad544f0b69dce9518c81b50",
+ "2a424bddd9174d0b80c3903dbe775bfc",
+ "7ae3d834443145d495f1656371ae9d6a",
+ "397128fbc4af4e9a90e3c63b706d5ed0",
+ "c8f2d3eaeeb3423dab3cdbb38e0d798e",
+ "ce944a90a4224ceb9961dc57c3d657f6",
+ "0b06f2f2710d43eea0426d1737c2a64b",
+ "fdeac6256f4b43468c00a4b251df955f",
+ "1e0d61dc183b4f07adbfdfeb6fb202f6",
+ "8eca6b521e024c80b98e1fc55683ce1b",
+ "1fcb7caae2b241d58338e5e527cf614b",
+ "45530b8c2e434dba8ef7c0b606097ddb",
+ "e1b77a2002554785b0ce7773feea287f",
+ "def607cd03ff47978cb0e4113e0fbb5d",
+ "fe77f2e7f6bc471b8ca41a655cda3f19",
+ "68746a06857e481b96d093b2839f8d5b",
+ "5c64944d7f67438eba35a49ba21cd3a2",
+ "bb60a920af7a429695df2971d9259ec6",
+ "526dec5c46e64ffbb2a5de18d89f7f0d",
+ "cdc9a0d590614f98afac8eacaa6d3160",
+ "21afae65d1604439a5942e6eddc25cda",
+ "79a64935d39d41aebea8a9ca07de4311",
+ "ab38d6da79ef41c49ee49264ca3fb0a1",
+ "a96ce339661e4e9eba96fea631035256",
+ "c49c137fc01d44f38ac770609ff9f71c",
+ "1b32fdbb446f4476ad1f81a49f6196c6",
+ "1517ca3338324e2baf15f6d4313b5bbe",
+ "17dbd042241d4532b34d1b81e331363d",
+ "23836dc9596848cbb3bff90ccf12778c",
+ "3ce1b50621bb4d0dbdfc3e9105df998b",
+ "2e0bf48c91454784a25304feb36dc026",
+ "3472b8bd64a040e388701c060eef23b7",
+ "027e2a80d66f48029d8b2b62d711c1c8",
+ "1784b7fff3a24535b9ebd9bfdefec3d5",
+ "80bdf3a46f844e59a4fc1a8d757928d8",
+ "ff3f3b40641e456caaa66eb280b61db1",
+ "e8fa47058b44474cbdca965fb8b1c522",
+ "f01093cd46814afb9e7448b2c21e7d67",
+ "d5e3a11b22a54e84a0be282fb55f70f6",
+ "02eefb0e19c74cf896c8718e255d4a65",
+ "9448492ea7b844d5ac3fcc4131defd06",
+ "d9a20f62b4604975802f84046fd79b3c"
+ ]
+ },
+ "id": "fIfcunhF4YM6",
+ "outputId": "6f691851-9d17-4b11-b0f0-c8419259cd99"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Cloning https://huggingface.co./kingabzpro/wav2vec2-large-xlsr-300-arabic into local empty directory.\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "42e499dd86dc450abf57174382b707a7",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Download file pytorch_model.bin: 0%| | 1.58k/1.18G [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "c5644d9ab3df42f8bbd7fdec762bdedc",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Download file training_args.bin: 100%|##########| 2.98k/2.98k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "d40cc59481a24e6291b9835527ba8a51",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Clean file training_args.bin: 34%|###3 | 1.00k/2.98k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "8d2e2ba680b44c6db7b590abb4c7c79f",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Download file language_model/5gram.bin: 0%| | 1.58k/326M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "fae06fbecf1242678fc9e760169bcb8b",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Clean file language_model/5gram.bin: 0%| | 1.00k/326M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "c384cea155b9499d8380125e60093d1b",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Clean file pytorch_model.bin: 0%| | 1.00k/1.18G [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from huggingface_hub import Repository\n",
+ "\n",
+ "repo = Repository(local_dir=\"wav2vec2-large-xlsr-300-arabic\", clone_from=\"kingabzpro/wav2vec2-large-xlsr-300-arabic\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "OaD20PvHbakc"
+ },
+ "source": [
+ "Having cloned `xls-r-300m-sv`, let's save the new processor with LM into it."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "id": "UZ1sWfPH2oce"
+ },
+ "outputs": [],
+ "source": [
+ "processor_with_lm.save_pretrained(\"wav2vec2-large-xlsr-300-arabic\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "TnkJ0iXvcITB"
+ },
+ "source": [
+ "Let's inspect the local repository. The `tree` command conveniently can also show the size of the different files."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "ClyENOYFcC_C",
+ "outputId": "88f00d40-35dd-473b-8685-f8c769a7bb19"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wav2vec2-large-xlsr-300-arabic/\n",
+ "├── [ 533] alphabet.json\n",
+ "├── [2.0K] config.json\n",
+ "├── [4.0K] language_model\n",
+ "│ ├── [898M] 5gram_correct.arpa\n",
+ "│ ├── [ 78] attrs.json\n",
+ "│ └── [2.0M] unigrams.txt\n",
+ "├── [ 262] preprocessor_config.json\n",
+ "├── [1.2G] pytorch_model.bin\n",
+ "├── [2.4K] README.md\n",
+ "├── [ 85] special_tokens_map.json\n",
+ "├── [ 510] tokenizer_config.json\n",
+ "├── [3.0K] training_args.bin\n",
+ "└── [ 520] vocab.json\n",
+ "\n",
+ "1 directory, 12 files\n"
+ ]
+ }
+ ],
+ "source": [
+ "!tree -h wav2vec2-large-xlsr-300-arabic/"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "kIRC6UcOcRMP"
+ },
+ "source": [
+ "As can be seen the *5-gram* LM is quite large - it amounts to more than 4 GB.\n",
+ "To reduce the size of the *n-gram* and make loading faster, `kenLM` allows converting `.arpa` files to binary ones using the `build_binary` executable.\n",
+ "\n",
+ "Let's make use of it here."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "X9qg4FPt2zi8",
+ "outputId": "644d1486-08a9-4827-92f5-7d7778d3b0ab"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Reading wav2vec2-large-xlsr-300-arabic/language_model/5gram_correct.arpa\n",
+ "----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
+ "****************************************************************************************************\n",
+ "SUCCESS\n"
+ ]
+ }
+ ],
+ "source": [
+ "!kenlm/build/bin/build_binary wav2vec2-large-xlsr-300-arabic/language_model/5gram_correct.arpa wav2vec2-large-xlsr-300-arabic/language_model/5gram.bin"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "fY2M8k2KdCNM"
+ },
+ "source": [
+ "Great, it worked! Let's remove the `.arpa` file and check the size of the binary *5-gram* LM."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Zn4J-4OZdMPc",
+ "outputId": "e7248d37-7115-4592-a62e-507a3a51315a"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wav2vec2-large-xlsr-300-arabic/\n",
+ "├── [ 533] alphabet.json\n",
+ "├── [2.0K] config.json\n",
+ "├── [4.0K] language_model\n",
+ "│ ├── [326M] 5gram.bin\n",
+ "│ ├── [ 78] attrs.json\n",
+ "│ └── [2.0M] unigrams.txt\n",
+ "├── [ 262] preprocessor_config.json\n",
+ "├── [1.2G] pytorch_model.bin\n",
+ "├── [2.4K] README.md\n",
+ "├── [ 85] special_tokens_map.json\n",
+ "├── [ 510] tokenizer_config.json\n",
+ "├── [3.0K] training_args.bin\n",
+ "└── [ 520] vocab.json\n",
+ "\n",
+ "1 directory, 12 files\n"
+ ]
+ }
+ ],
+ "source": [
+ "!rm wav2vec2-large-xlsr-300-arabic/language_model/5gram_correct.arpa && tree -h wav2vec2-large-xlsr-300-arabic/"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "4g112tF_dgIc"
+ },
+ "source": [
+ "Nice, we reduced the *n-gram* by more than half to less than 2GB now. In the final step, let's upload all files."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 119,
+ "referenced_widgets": [
+ "13dc79c921f649bc916b3a3f94bce935",
+ "384a1164636949bd841586d4adf5af25",
+ "e0775f61b5da4eb6b7fc377182cca761",
+ "5a144157cd1a4f71abbea1c89daeb077",
+ "de2e317bc61f48e28baaaea2dd601b0d",
+ "5fd3ecc4714140aab0aa62bce6c316c4",
+ "445521858fcb43479b8ae9b4bf2d6cb0",
+ "a3784489412b4bd4861c0dbcfdfa3699",
+ "2585c7e158c144f88e6045e0f083f10d",
+ "444b2533d20c47cb9f24ce509cdd1f97",
+ "a314270979984477a88ae66db93aa6c0"
+ ]
+ },
+ "id": "WEV1sx6ee3aT",
+ "outputId": "2831dbfb-4734-407a-f579-5e0886fc1028"
+ },
+ "outputs": [
+ {
+ "ename": "FileNotFoundError",
+ "evalue": "[Errno 2] No such file or directory: '/workspace/wav2vec2-large-xlsr-300-arabic/\".ipynb_checkpoints/Boosting_Wav2Vec2_with_n_grams_in_\\\\360\\\\237\\\\244\\\\227_Transformers_(1)-checkpoint.ipynb\"'",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
+ "Input \u001b[0;32mIn [8]\u001b[0m, in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mrepo\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpush_to_hub\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcommit_message\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mEval-results\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
+ "File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/huggingface_hub/repository.py:1249\u001b[0m, in \u001b[0;36mRepository.push_to_hub\u001b[0;34m(self, commit_message, blocking, clean_ok, auto_lfs_prune)\u001b[0m\n\u001b[1;32m 1247\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRepo currently clean. Ignoring push_to_hub\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 1248\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m-> 1249\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgit_add\u001b[49m\u001b[43m(\u001b[49m\u001b[43mauto_lfs_track\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 1250\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgit_commit(commit_message)\n\u001b[1;32m 1251\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgit_push(\n\u001b[1;32m 1252\u001b[0m upstream\u001b[38;5;241m=\u001b[39m\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124morigin \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcurrent_branch\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 1253\u001b[0m blocking\u001b[38;5;241m=\u001b[39mblocking,\n\u001b[1;32m 1254\u001b[0m auto_lfs_prune\u001b[38;5;241m=\u001b[39mauto_lfs_prune,\n\u001b[1;32m 1255\u001b[0m )\n",
+ "File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/huggingface_hub/repository.py:921\u001b[0m, in \u001b[0;36mRepository.git_add\u001b[0;34m(self, pattern, auto_lfs_track)\u001b[0m\n\u001b[1;32m 914\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 915\u001b[0m \u001b[38;5;124;03mgit add\u001b[39;00m\n\u001b[1;32m 916\u001b[0m \n\u001b[1;32m 917\u001b[0m \u001b[38;5;124;03mSetting the `auto_lfs_track` parameter to `True` will automatically track files that are larger\u001b[39;00m\n\u001b[1;32m 918\u001b[0m \u001b[38;5;124;03mthan 10MB with `git-lfs`.\u001b[39;00m\n\u001b[1;32m 919\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 920\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m auto_lfs_track:\n\u001b[0;32m--> 921\u001b[0m tracked_files \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mauto_track_large_files\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpattern\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 922\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m tracked_files:\n\u001b[1;32m 923\u001b[0m logger\u001b[38;5;241m.\u001b[39mwarning(\n\u001b[1;32m 924\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAdding files tracked by Git LFS: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mtracked_files\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m. This may take a bit of time if the files are large.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 925\u001b[0m )\n",
+ "File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/huggingface_hub/repository.py:846\u001b[0m, in \u001b[0;36mRepository.auto_track_large_files\u001b[0;34m(self, pattern)\u001b[0m\n\u001b[1;32m 843\u001b[0m \u001b[38;5;28;01mcontinue\u001b[39;00m\n\u001b[1;32m 845\u001b[0m path_to_file \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(os\u001b[38;5;241m.\u001b[39mgetcwd(), \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlocal_dir, filename)\n\u001b[0;32m--> 846\u001b[0m size_in_mb \u001b[38;5;241m=\u001b[39m \u001b[43mos\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgetsize\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath_to_file\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;241m/\u001b[39m (\u001b[38;5;241m1024\u001b[39m \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m1024\u001b[39m)\n\u001b[1;32m 848\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[1;32m 849\u001b[0m size_in_mb \u001b[38;5;241m>\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m10\u001b[39m\n\u001b[1;32m 850\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_tracked_with_lfs(path_to_file)\n\u001b[1;32m 851\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_git_ignored(path_to_file)\n\u001b[1;32m 852\u001b[0m ):\n\u001b[1;32m 853\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlfs_track(filename)\n",
+ "File \u001b[0;32m/opt/conda/lib/python3.8/genericpath.py:50\u001b[0m, in \u001b[0;36mgetsize\u001b[0;34m(filename)\u001b[0m\n\u001b[1;32m 48\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mgetsize\u001b[39m(filename):\n\u001b[1;32m 49\u001b[0m \u001b[38;5;124;03m\"\"\"Return the size of a file, reported by os.stat().\"\"\"\u001b[39;00m\n\u001b[0;32m---> 50\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mos\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstat\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilename\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mst_size\n",
+ "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/workspace/wav2vec2-large-xlsr-300-arabic/\".ipynb_checkpoints/Boosting_Wav2Vec2_with_n_grams_in_\\\\360\\\\237\\\\244\\\\227_Transformers_(1)-checkpoint.ipynb\"'"
+ ]
+ }
+ ],
+ "source": [
+ "repo.push_to_hub(commit_message=\"Eval-results\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "x_rVwrJQVBN5",
+ "outputId": "09179a83-557b-4e5c-ba3c-b0281f147c2e"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Downloading: 100%|█████████████████████████| 9.88k/9.88k [00:00<00:00, 5.92MB/s]\n",
+ "Downloading: 100%|█████████████████████████| 2.98k/2.98k [00:00<00:00, 1.83MB/s]\n",
+ "Downloading: 100%|█████████████████████████| 49.7k/49.7k [00:00<00:00, 1.72MB/s]\n",
+ "Downloading and preparing dataset common_voice/ar to /workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/ar/7.0.0/fe20cac47c166e25b1f096ab661832e3da7cf298ed4a91dcaa1343ad972d175b...\n",
+ "Downloading: 100%|█████████████████████████| 2.95G/2.95G [02:10<00:00, 22.5MB/s]\n",
+ "Dataset common_voice downloaded and prepared to /workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/ar/7.0.0/fe20cac47c166e25b1f096ab661832e3da7cf298ed4a91dcaa1343ad972d175b. Subsequent calls will reuse this data.\n",
+ "Downloading: 100%|██████████████████████████| 2.02k/2.02k [00:00<00:00, 887kB/s]\n",
+ "Downloading: 100%|██████████████████████████████| 262/262 [00:00<00:00, 166kB/s]\n",
+ "Downloading: 100%|█████████████████████████| 1.18G/1.18G [00:18<00:00, 69.7MB/s]\n",
+ "Downloading: 100%|██████████████████████████████| 510/510 [00:00<00:00, 252kB/s]\n",
+ "Downloading: 100%|██████████████████████████████| 520/520 [00:00<00:00, 344kB/s]\n",
+ "Downloading: 100%|███████████████████████████| 85.0/85.0 [00:00<00:00, 53.8kB/s]\n",
+ "Downloading: 100%|██████████████████████████████| 533/533 [00:00<00:00, 303kB/s]\n",
+ "Downloading: 100%|███████████████████████████| 342M/342M [00:07<00:00, 48.5MB/s]\n",
+ "Downloading: 100%|███████████████████████████| 78.0/78.0 [00:00<00:00, 53.8kB/s]\n",
+ "Downloading: 100%|█████████████████████████| 2.14M/2.14M [00:00<00:00, 16.9MB/s]\n",
+ "8ex [00:00, 19.71ex/s]/opt/conda/lib/python3.8/site-packages/transformers/pipelines/base.py:976: UserWarning: You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset\n",
+ " warnings.warn(\n",
+ "10284ex [07:27, 22.99ex/s]\n",
+ "Downloading: 4.48kB [00:00, 3.06MB/s] \n",
+ "Downloading: 5.59kB [00:00, 2.87MB/s] \n",
+ "WER: 0.3882512836001208\n",
+ "CER: 0.15335327074758484\n",
+ "10284ex [00:00, 19585.20ex/s]\n"
+ ]
+ }
+ ],
+ "source": [
+ "!python eval.py --model_id kingabzpro/wav2vec2-large-xlsr-300-arabic --dataset mozilla-foundation/common_voice_7_0 --config ar --split test\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "gUPAx3_MdyQv"
+ },
+ "source": [
+ "That's it. Now you should be able to use the *5gram* for LM-boosted decoding as shown in Section 1.\n",
+ "\n",
+ "As can be seen on [`xls-r-300m-sv`'s model card](https://huggingface.co./hf-test/xls-r-300m-sv#inference-with-lm) our *5gram* LM-boosted decoder yields a WER of 18.85% on Common Voice's 7 test set which is a relative performance of *ca.* 30% 🔥."
+ ]
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "collapsed_sections": [],
+ "name": "Boosting_Wav2Vec2_with_n_grams_in_🤗_Transformers (1).ipynb",
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.8"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "00b92ed648e94e8b975f4c66cc329c19": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e3dafae56ffb4a5cbc84d80bc7f30c87",
+ "max": 24714354,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_4e562a18f1a0471ea0ebd4007a2d674e",
+ "value": 24714354
+ }
+ },
+ "027e2a80d66f48029d8b2b62d711c1c8": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "02eefb0e19c74cf896c8718e255d4a65": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "04b1c8bb81894178ba1e3e6f63f30a2a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": "20px"
+ }
+ },
+ "0a8890bfad3f4fdca81a1c88e376af65": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0b06f2f2710d43eea0426d1737c2a64b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0f21362b91214406a29a82fcffc34bf7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a0ec12647b784b2d94a298db506e1ca4",
+ "placeholder": "",
+ "style": "IPY_MODEL_d8d482db758d4052afe8019ba59d816a",
+ "value": " 82450/0 [00:04<00:00, 19622.66 examples/s]"
+ }
+ },
+ "0f65e709ee974823a88f7819d28a6da9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_220276fb03104701a48d025d1da9220e",
+ "IPY_MODEL_209de0d4c6a94c9cb448f5d82011b941",
+ "IPY_MODEL_e45502db00094658b19bd14876220095"
+ ],
+ "layout": "IPY_MODEL_2f3b99d85a6a495eb9861423a3a83ba0"
+ }
+ },
+ "0fe85e546f7a435d922f318c70c72922": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "1318e59ca3754f74931e8226e55534ad": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "13dc79c921f649bc916b3a3f94bce935": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_e0775f61b5da4eb6b7fc377182cca761",
+ "IPY_MODEL_5a144157cd1a4f71abbea1c89daeb077",
+ "IPY_MODEL_de2e317bc61f48e28baaaea2dd601b0d"
+ ],
+ "layout": "IPY_MODEL_384a1164636949bd841586d4adf5af25"
+ }
+ },
+ "14d54849b0e7466f926ae44c339ea6d5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "1517ca3338324e2baf15f6d4313b5bbe": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "16a8075896df4ca181a70973a59d1fd7": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "1784b7fff3a24535b9ebd9bfdefec3d5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f01093cd46814afb9e7448b2c21e7d67",
+ "placeholder": "",
+ "style": "IPY_MODEL_e8fa47058b44474cbdca965fb8b1c522",
+ "value": "Clean file pytorch_model.bin: 100%"
+ }
+ },
+ "17dbd042241d4532b34d1b81e331363d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "17f98118face47319366faf10404ac8e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "1963287764bb48fa86c7437eb2dad75b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "1a217cc1d9bf49bdaac6e63392acbc48": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_56a885f1a3ee41558db5fc264d3c1b25",
+ "placeholder": "",
+ "style": "IPY_MODEL_9828498cd0ae4df2886e8b7ec89a897b",
+ "value": "100%"
+ }
+ },
+ "1b32fdbb446f4476ad1f81a49f6196c6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "1b4a50a4aeea429795ff12ccf7e25ecc": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": "20px"
+ }
+ },
+ "1e0d61dc183b4f07adbfdfeb6fb202f6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "1ed0e06794dd4d74846f362e3c2c30a2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "1fcb7caae2b241d58338e5e527cf614b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "209de0d4c6a94c9cb448f5d82011b941": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_17f98118face47319366faf10404ac8e",
+ "max": 2067,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_fdb329d825234d198d608c99eb1cfbf2",
+ "value": 2067
+ }
+ },
+ "21afae65d1604439a5942e6eddc25cda": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_ab38d6da79ef41c49ee49264ca3fb0a1",
+ "IPY_MODEL_a96ce339661e4e9eba96fea631035256",
+ "IPY_MODEL_c49c137fc01d44f38ac770609ff9f71c"
+ ],
+ "layout": "IPY_MODEL_79a64935d39d41aebea8a9ca07de4311"
+ }
+ },
+ "220276fb03104701a48d025d1da9220e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_378d560bd8b341abbac878b85efe3b76",
+ "placeholder": "",
+ "style": "IPY_MODEL_f4334884958c4c179e8ed6d5adaea268",
+ "value": "Downloading: 100%"
+ }
+ },
+ "22d47e45145145c4b93af8815c72748c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "23836dc9596848cbb3bff90ccf12778c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "24e2c359cc9648f49ea0425ea64db84f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6166316067034e549b353634d3b9607b",
+ "max": 1,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_a521cbd3f7044e1fa1b28a9326f445a6",
+ "value": 1
+ }
+ },
+ "2585c7e158c144f88e6045e0f083f10d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "259afd5137d847a586716be29c5e26c6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "27251e4284a3416c94ae0ca49dc8dcb8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_be05ffe206b943b0adc5747b4b0bf5f7",
+ "IPY_MODEL_4f5b99cea30146caad68f453156b2ecb",
+ "IPY_MODEL_7b52991c22614e76a8dc34332b390eda"
+ ],
+ "layout": "IPY_MODEL_4a807eafb6af4015864e8e5daa2883af"
+ }
+ },
+ "2a424bddd9174d0b80c3903dbe775bfc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0b06f2f2710d43eea0426d1737c2a64b",
+ "max": 1262136881,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_ce944a90a4224ceb9961dc57c3d657f6",
+ "value": 1262136881
+ }
+ },
+ "2bb63d36fe704a728665dff3d042647f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_4dfa9c9cafc3404ead4f759164cc7a88",
+ "placeholder": "",
+ "style": "IPY_MODEL_d61e6c1731b540b6a03d794f8f6b2917",
+ "value": " 181/181 [00:00<00:00, 3.92kB/s]"
+ }
+ },
+ "2d23fb97540040bda093ff13dccaa713": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2e0bf48c91454784a25304feb36dc026": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2f3b99d85a6a495eb9861423a3a83ba0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3055fb1d66bc44c2af2151833de0c08f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3da1354f62f94f8eb38f6f64b089b600",
+ "placeholder": "",
+ "style": "IPY_MODEL_d8e87a5cbcbe421b9f1723280db3b821",
+ "value": " 1.67k/1.67k [00:00<00:00, 42.5kB/s]"
+ }
+ },
+ "3137ac50cbae426e9031cc79d9c3443b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "33463ea837694d9c9b5a8fb8b5446678": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_55c04c986abd489fb443a0bf03c3c293",
+ "placeholder": "",
+ "style": "IPY_MODEL_22d47e45145145c4b93af8815c72748c",
+ "value": " 520/520 [00:00<00:00, 6.14kB/s]"
+ }
+ },
+ "340ffa930c5948c0a906e83900835078": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3472b8bd64a040e388701c060eef23b7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_1784b7fff3a24535b9ebd9bfdefec3d5",
+ "IPY_MODEL_80bdf3a46f844e59a4fc1a8d757928d8",
+ "IPY_MODEL_ff3f3b40641e456caaa66eb280b61db1"
+ ],
+ "layout": "IPY_MODEL_027e2a80d66f48029d8b2b62d711c1c8"
+ }
+ },
+ "3717640fa6e740c6a73e061fd9cd59e8": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3752bd8127d140829a62045098151b37": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "378d560bd8b341abbac878b85efe3b76": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "384a1164636949bd841586d4adf5af25": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "397128fbc4af4e9a90e3c63b706d5ed0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "3acc38512cf247d1b642c35c7be84afc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_e91a935aedfd4dd9a21b70494ff6f542",
+ "IPY_MODEL_d1b8438266994972a4be7bd20bcb7fc3",
+ "IPY_MODEL_42e00e6e6e4b4b679c74b1818024cb43"
+ ],
+ "layout": "IPY_MODEL_881a35658b1442eda6fcf46249363a44"
+ }
+ },
+ "3ce1b50621bb4d0dbdfc3e9105df998b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "3da1354f62f94f8eb38f6f64b089b600": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3dcfd3664dab4bc39dda69085533423d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "3e2fc0a577634ef2b691e685aa560b3c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "3f7f23c3d40a4a629c26115bad8b19c6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3752bd8127d140829a62045098151b37",
+ "max": 7406,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_dfcd53bb9a6f4cf3b6cdc84f40bbcd51",
+ "value": 7406
+ }
+ },
+ "4058293c10c34ae2b0ff3446abac80a4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "4066d4a6efec4986b08b27ac23bf0248": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "406bd04592b4428db058aed30b1ea657": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "40a6127b87464cddba87f6c97c308594": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "41e30f39a9f34d65922779c7c2a8b98e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "42e00e6e6e4b4b679c74b1818024cb43": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_cb90869a6bc248008e2bc31e068d68d0",
+ "placeholder": "",
+ "style": "IPY_MODEL_cbcc10764b604098951e6371fbd6f480",
+ "value": " 25.5M/25.5M [00:00<00:00, 40.9MB/s]"
+ }
+ },
+ "4390697c0a3c4b8e99981c3b6c481730": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_84a82690b68f4bf284f4f6808db41efb",
+ "placeholder": "",
+ "style": "IPY_MODEL_6ae456c84fd047388640754082802eca",
+ "value": "Downloading: 100%"
+ }
+ },
+ "444b2533d20c47cb9f24ce509cdd1f97": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "445521858fcb43479b8ae9b4bf2d6cb0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "45215ac3e54a4cb08e83fa03b4d49976": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "45530b8c2e434dba8ef7c0b606097ddb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_68746a06857e481b96d093b2839f8d5b",
+ "placeholder": "",
+ "style": "IPY_MODEL_fe77f2e7f6bc471b8ca41a655cda3f19",
+ "value": "Download file training_args.bin: 100%"
+ }
+ },
+ "497dba4eae904328999f653d66c2385f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "49f7e6f289254977a2aafa2f1ee142db": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_a0b28f4e2ad544f0b69dce9518c81b50",
+ "IPY_MODEL_2a424bddd9174d0b80c3903dbe775bfc",
+ "IPY_MODEL_7ae3d834443145d495f1656371ae9d6a"
+ ],
+ "layout": "IPY_MODEL_8ee054a3be1a4c03a529940b1643f0d1"
+ }
+ },
+ "4a807eafb6af4015864e8e5daa2883af": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "4b2d00e46a7a4fe896703a52c010aaa6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "4b332599027046f881e5166a43a0ea06": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_da9014bd6d9f452a9af2e3d7019bcc62",
+ "IPY_MODEL_7a8bc9fd2b91477f95943f2658bcb6be",
+ "IPY_MODEL_6078c7718ef041a4964a6a6638c8ebc4"
+ ],
+ "layout": "IPY_MODEL_bd24df614b3746909a7b4ede68615ff5"
+ }
+ },
+ "4c2acf65c8df4e309e56763e263943c5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d8e024f11dc9449ba30471f035633a20",
+ "max": 181,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_3e2fc0a577634ef2b691e685aa560b3c",
+ "value": 181
+ }
+ },
+ "4dfa9c9cafc3404ead4f759164cc7a88": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "4e562a18f1a0471ea0ebd4007a2d674e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "4e82782bab1b4871a2f499ac33a3b4cf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ButtonModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ButtonModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ButtonView",
+ "button_style": "",
+ "description": "Use password",
+ "disabled": false,
+ "icon": "",
+ "layout": "IPY_MODEL_0fe85e546f7a435d922f318c70c72922",
+ "style": "IPY_MODEL_cf248ff18ac9473890936393caddf805",
+ "tooltip": ""
+ }
+ },
+ "4f5b99cea30146caad68f453156b2ecb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_14d54849b0e7466f926ae44c339ea6d5",
+ "max": 85,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_6a61b52c2d504dcf9a4a4b5dce3d027c",
+ "value": 85
+ }
+ },
+ "4fcd74b216e04fa08933a89c88f94b2f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_d224e3c405ed44ec91ed6bf5f2fff975",
+ "IPY_MODEL_24e2c359cc9648f49ea0425ea64db84f",
+ "IPY_MODEL_c970626699134c519ec6b5defc4cbc95"
+ ],
+ "layout": "IPY_MODEL_5eaa47526b3d4e0d8c4b50823e3c2e0a"
+ }
+ },
+ "51b1843f81e642c5ae0cb8c95240b1c4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "526dec5c46e64ffbb2a5de18d89f7f0d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "55c04c986abd489fb443a0bf03c3c293": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "56a885f1a3ee41558db5fc264d3c1b25": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "572a608e21ef405f98730b1bc7658368": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "573106ec254c424d92aa8f46f9b21059": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "576a3745924e49148323cf37fdf23501": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5a0353a8a1be47a1a42f1e05eb72eb68": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5a144157cd1a4f71abbea1c89daeb077": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2585c7e158c144f88e6045e0f083f10d",
+ "max": 341947584,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_a3784489412b4bd4861c0dbcfdfa3699",
+ "value": 341947584
+ }
+ },
+ "5a582babdfcc4069b751ed8873c75d57": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_fa0aeb1c2ce149c8bfded42526893694",
+ "max": 1665,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_eda966270a8042f68f9e16db670f13fe",
+ "value": 1665
+ }
+ },
+ "5bb04fe5c73b4bc09f1aa05952244413": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3717640fa6e740c6a73e061fd9cd59e8",
+ "placeholder": "",
+ "style": "IPY_MODEL_f692fa3e8bad4f359baaff49a70d5cd5",
+ "value": ""
+ }
+ },
+ "5bf72ebf0c364863b1cfc13aa6c14235": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5c64944d7f67438eba35a49ba21cd3a2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "5d00bf261e08411ab9c1a6127723f344": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "VBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "VBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "VBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_e08f20628d6e4553a05a30ede0cd4f5c",
+ "IPY_MODEL_fc9eb8784a9a4636a79e6f538e599727",
+ "IPY_MODEL_be93f4ff43ee4ba9b7930044e74c56dd",
+ "IPY_MODEL_8c627fc877fa42e2aa2eeeafdc86a078",
+ "IPY_MODEL_4e82782bab1b4871a2f499ac33a3b4cf"
+ ],
+ "layout": "IPY_MODEL_dc353060f608487fb9a9bf6e71d4c1c1"
+ }
+ },
+ "5eaa47526b3d4e0d8c4b50823e3c2e0a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5f132d8f475345f7acef6a4996a026cf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_be4fd6ba2c024224a10571a3a2c44637",
+ "placeholder": "",
+ "style": "IPY_MODEL_9681133982cc42048815e2c30e1b4436",
+ "value": " 24.7M/24.7M [00:10<00:00, 9.57MB/s]"
+ }
+ },
+ "5fd3ecc4714140aab0aa62bce6c316c4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "6078c7718ef041a4964a6a6638c8ebc4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_340ffa930c5948c0a906e83900835078",
+ "placeholder": "",
+ "style": "IPY_MODEL_d9d8f94214874beab17893c14f34029d",
+ "value": " 1/1 [00:02<00:00, 2.46s/it]"
+ }
+ },
+ "6166316067034e549b353634d3b9607b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6433d64ddce540f3acacb9990c6f8b20": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "645415cf5a7f4c0482fb7944aa41da62": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ButtonStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ButtonStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "button_color": null,
+ "font_weight": ""
+ }
+ },
+ "678d73e72aa941b2b1f3d1e85ed0d952": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "68746a06857e481b96d093b2839f8d5b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "698d0b728b4746e7b4a1bec8d9b475ba": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_c80c54b2337e48c999e392b0c0daab65",
+ "IPY_MODEL_9b59c5e85ea546bd936a53ff1ece936e",
+ "IPY_MODEL_c6e0dc5b363246549548fd3764da0d28"
+ ],
+ "layout": "IPY_MODEL_a241dfe3267841b0bfe2ee227c6c1671"
+ }
+ },
+ "6997e0504b9d4cd6b2f16f41ce144d3c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "6a61b52c2d504dcf9a4a4b5dce3d027c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "6ae456c84fd047388640754082802eca": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "6df99d787b464e948be476dc9a68ada8": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "70ccf93519c34dfe91036ae605d2033d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e4a39d6afc82422b980f2ebfe601d4bc",
+ "placeholder": "",
+ "style": "IPY_MODEL_1318e59ca3754f74931e8226e55534ad",
+ "value": "Downloading: 100%"
+ }
+ },
+ "7118b4831e714b63a0ca36458eb29426": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "72b8ff227663406f88069ed51847447d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "73e64b85117b4bc69d013fad313da9c6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_5bb04fe5c73b4bc09f1aa05952244413",
+ "IPY_MODEL_d4adf3cee88e4482b20f9f0d3b87a36a",
+ "IPY_MODEL_0f21362b91214406a29a82fcffc34bf7"
+ ],
+ "layout": "IPY_MODEL_678d73e72aa941b2b1f3d1e85ed0d952"
+ }
+ },
+ "77db336868d84805937445c51ea72df4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d050daf64b5944fdad48b963ad482f7c",
+ "placeholder": "",
+ "style": "IPY_MODEL_eb4ed31888734fe39dd96f9642abd38b",
+ "value": "Downloading: "
+ }
+ },
+ "79a64935d39d41aebea8a9ca07de4311": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "7a8bc9fd2b91477f95943f2658bcb6be": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f6d9a4de2f4b43baaddd1860f39603d5",
+ "max": 1,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_406bd04592b4428db058aed30b1ea657",
+ "value": 1
+ }
+ },
+ "7ae3d834443145d495f1656371ae9d6a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1e0d61dc183b4f07adbfdfeb6fb202f6",
+ "placeholder": "",
+ "style": "IPY_MODEL_fdeac6256f4b43468c00a4b251df955f",
+ "value": " 1.18G/1.18G [07:44<00:00, 87.2kB/s]"
+ }
+ },
+ "7b52991c22614e76a8dc34332b390eda": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5bf72ebf0c364863b1cfc13aa6c14235",
+ "placeholder": "",
+ "style": "IPY_MODEL_572a608e21ef405f98730b1bc7658368",
+ "value": " 85.0/85.0 [00:00<00:00, 732B/s]"
+ }
+ },
+ "7c73c747977044d2a07363d4e8f4a1c5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "7e26850063c546e181e11d96300d7cb4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0a8890bfad3f4fdca81a1c88e376af65",
+ "max": 520,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_573106ec254c424d92aa8f46f9b21059",
+ "value": 520
+ }
+ },
+ "7e42a15a02784846979282c51886366b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "803ecbcbf8bd4292a0a0eb84466da050": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ee8e480112e443c3b5646a36d0eb8d6b",
+ "max": 1,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_97050804252e4319be2ac806ccd5106b",
+ "value": 1
+ }
+ },
+ "80bdf3a46f844e59a4fc1a8d757928d8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_02eefb0e19c74cf896c8718e255d4a65",
+ "max": 1262136881,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_d5e3a11b22a54e84a0be282fb55f70f6",
+ "value": 1262136881
+ }
+ },
+ "813507347dc949f5b639fefb58f3f462": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "84a82690b68f4bf284f4f6808db41efb": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "850edc7115a34dde9ddf6e36b5f1e8dd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ed723bd499654388b4717624baa2a288",
+ "placeholder": "",
+ "style": "IPY_MODEL_c8b82acda88245b686d57b496466a3e2",
+ "value": "Downloading: "
+ }
+ },
+ "8533cf21f06b4fd289b60fe6cc9add37": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "8584eaf09efb49c995f5a2b1c25fe089": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "86a4292b30ec47c0a875ada683c00886": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a8604194873b4defadb70736fe913d6e",
+ "placeholder": "",
+ "style": "IPY_MODEL_72b8ff227663406f88069ed51847447d",
+ "value": ""
+ }
+ },
+ "880b6bbcaad54eb8ba377377b1858ffd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_850edc7115a34dde9ddf6e36b5f1e8dd",
+ "IPY_MODEL_3f7f23c3d40a4a629c26115bad8b19c6",
+ "IPY_MODEL_ef6e382ddb8f475981b9f2ea8312bf46"
+ ],
+ "layout": "IPY_MODEL_d37fb9ad76e64370a426f306919bedd0"
+ }
+ },
+ "881a35658b1442eda6fcf46249363a44": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "88e5417fad3d442585c799cfd9d2f8f4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "892e9754ffc24e71b20fd93751afbd0f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_70ccf93519c34dfe91036ae605d2033d",
+ "IPY_MODEL_7e26850063c546e181e11d96300d7cb4",
+ "IPY_MODEL_33463ea837694d9c9b5a8fb8b5446678"
+ ],
+ "layout": "IPY_MODEL_8edc330e2ea74e22804842e6b7b5d6c4"
+ }
+ },
+ "8c627fc877fa42e2aa2eeeafdc86a078": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_cba65a7677624eaca65ab461e633dc0e",
+ "placeholder": "",
+ "style": "IPY_MODEL_4066d4a6efec4986b08b27ac23bf0248",
+ "value": "\nPro Tip: If you don't already have one, you can create a dedicated 'notebooks' token with 'write' access, that you can then easily reuse for all notebooks.\n \nLogging in with your username and password is deprecated and won't be possible anymore in the near future. You can still use them for now by clicking below. \n "
+ }
+ },
+ "8e83e3877fb04eb6a158adceb983a85c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "8eca6b521e024c80b98e1fc55683ce1b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_45530b8c2e434dba8ef7c0b606097ddb",
+ "IPY_MODEL_e1b77a2002554785b0ce7773feea287f",
+ "IPY_MODEL_def607cd03ff47978cb0e4113e0fbb5d"
+ ],
+ "layout": "IPY_MODEL_1fcb7caae2b241d58338e5e527cf614b"
+ }
+ },
+ "8edc330e2ea74e22804842e6b7b5d6c4": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "8ee054a3be1a4c03a529940b1643f0d1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "90ec52eebee44eeea4cdead5bf665b67": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "9448492ea7b844d5ac3fcc4131defd06": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "95d736dd67b849ebae4433bff689cd06": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_a377ec0ebad0485987b93ae5212ab19f",
+ "IPY_MODEL_00b92ed648e94e8b975f4c66cc329c19",
+ "IPY_MODEL_5f132d8f475345f7acef6a4996a026cf"
+ ],
+ "layout": "IPY_MODEL_8584eaf09efb49c995f5a2b1c25fe089"
+ }
+ },
+ "962ef3466f0d4c779bf7f492956f8b77": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9681133982cc42048815e2c30e1b4436": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "97050804252e4319be2ac806ccd5106b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "9828498cd0ae4df2886e8b7ec89a897b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "9b59c5e85ea546bd936a53ff1ece936e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_7c73c747977044d2a07363d4e8f4a1c5",
+ "max": 214,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_1ed0e06794dd4d74846f362e3c2c30a2",
+ "value": 214
+ }
+ },
+ "9c52b398782b40cb99a35d2bf5f079b8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_86a4292b30ec47c0a875ada683c00886",
+ "IPY_MODEL_ac78dc635d2448dea7fdba88d7df067f",
+ "IPY_MODEL_d4595639599e4233856655c8fe255deb"
+ ],
+ "layout": "IPY_MODEL_3137ac50cbae426e9031cc79d9c3443b"
+ }
+ },
+ "9e34107cd8864135ab07a414f94bd163": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a0b28f4e2ad544f0b69dce9518c81b50": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c8f2d3eaeeb3423dab3cdbb38e0d798e",
+ "placeholder": "",
+ "style": "IPY_MODEL_397128fbc4af4e9a90e3c63b706d5ed0",
+ "value": "Download file pytorch_model.bin: 100%"
+ }
+ },
+ "a0ec12647b784b2d94a298db506e1ca4": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a241dfe3267841b0bfe2ee227c6c1671": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a314270979984477a88ae66db93aa6c0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a377ec0ebad0485987b93ae5212ab19f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_16a8075896df4ca181a70973a59d1fd7",
+ "placeholder": "",
+ "style": "IPY_MODEL_90ec52eebee44eeea4cdead5bf665b67",
+ "value": "Downloading: 100%"
+ }
+ },
+ "a3784489412b4bd4861c0dbcfdfa3699": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "a521cbd3f7044e1fa1b28a9326f445a6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "a8604194873b4defadb70736fe913d6e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a8c9482eab0f4738b4f45c045a0a1074": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_1a217cc1d9bf49bdaac6e63392acbc48",
+ "IPY_MODEL_803ecbcbf8bd4292a0a0eb84466da050",
+ "IPY_MODEL_b8983f9825a74d9287ba38da0fa2fd49"
+ ],
+ "layout": "IPY_MODEL_cf8518414b484434a82b5933f5709cad"
+ }
+ },
+ "a96ce339661e4e9eba96fea631035256": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_23836dc9596848cbb3bff90ccf12778c",
+ "max": 3055,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_17dbd042241d4532b34d1b81e331363d",
+ "value": 3055
+ }
+ },
+ "ab38d6da79ef41c49ee49264ca3fb0a1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1517ca3338324e2baf15f6d4313b5bbe",
+ "placeholder": "",
+ "style": "IPY_MODEL_1b32fdbb446f4476ad1f81a49f6196c6",
+ "value": "Clean file training_args.bin: 100%"
+ }
+ },
+ "ac78dc635d2448dea7fdba88d7df067f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_04b1c8bb81894178ba1e3e6f63f30a2a",
+ "max": 1,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_3dcfd3664dab4bc39dda69085533423d",
+ "value": 1
+ }
+ },
+ "adf6b751f48c4d6f9fa1cf3f218e4226": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b56947879e764c59a50dd8029f7ba024": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b8983f9825a74d9287ba38da0fa2fd49": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ebaad2c1a3d24f318b9906d74ac20f04",
+ "placeholder": "",
+ "style": "IPY_MODEL_7118b4831e714b63a0ca36458eb29426",
+ "value": " 1/1 [00:00<00:00, 28.35it/s]"
+ }
+ },
+ "b9861ef1c3534e90b472be9ed8862f17": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b9de9edf003545b4bfc0664ca69f06e5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "bb60a920af7a429695df2971d9259ec6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "bc2c75c27ed84a8394ec2e88b642f39d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "bd24df614b3746909a7b4ede68615ff5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "be05ffe206b943b0adc5747b4b0bf5f7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_497dba4eae904328999f653d66c2385f",
+ "placeholder": "",
+ "style": "IPY_MODEL_7e42a15a02784846979282c51886366b",
+ "value": "Downloading: 100%"
+ }
+ },
+ "be4fd6ba2c024224a10571a3a2c44637": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "be93f4ff43ee4ba9b7930044e74c56dd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ButtonModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ButtonModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ButtonView",
+ "button_style": "",
+ "description": "Login",
+ "disabled": false,
+ "icon": "",
+ "layout": "IPY_MODEL_259afd5137d847a586716be29c5e26c6",
+ "style": "IPY_MODEL_645415cf5a7f4c0482fb7944aa41da62",
+ "tooltip": ""
+ }
+ },
+ "c11cebba65ff40ae83681d434ebe47ea": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6df99d787b464e948be476dc9a68ada8",
+ "placeholder": "",
+ "style": "IPY_MODEL_4058293c10c34ae2b0ff3446abac80a4",
+ "value": "Downloading: 100%"
+ }
+ },
+ "c1931c4022d84d28815d460f72ef908b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c49c137fc01d44f38ac770609ff9f71c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2e0bf48c91454784a25304feb36dc026",
+ "placeholder": "",
+ "style": "IPY_MODEL_3ce1b50621bb4d0dbdfc3e9105df998b",
+ "value": " 2.98k/2.98k [07:44<00:00, 4.37B/s]"
+ }
+ },
+ "c5eb721fe1b841168a49b5bc22435791": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_77db336868d84805937445c51ea72df4",
+ "IPY_MODEL_fb4d2faef4da4dc0ae1203f9376053af",
+ "IPY_MODEL_edbdbc0a82854bde92e5abf6c8f87534"
+ ],
+ "layout": "IPY_MODEL_b9861ef1c3534e90b472be9ed8862f17"
+ }
+ },
+ "c600c14d43bc4ce087292ab7ecba7b82": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_4390697c0a3c4b8e99981c3b6c481730",
+ "IPY_MODEL_5a582babdfcc4069b751ed8873c75d57",
+ "IPY_MODEL_3055fb1d66bc44c2af2151833de0c08f"
+ ],
+ "layout": "IPY_MODEL_b56947879e764c59a50dd8029f7ba024"
+ }
+ },
+ "c6e0dc5b363246549548fd3764da0d28": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_eb97689e4f4a46a9bd1691b56a2473d1",
+ "placeholder": "",
+ "style": "IPY_MODEL_adf6b751f48c4d6f9fa1cf3f218e4226",
+ "value": " 214/214 [00:00<00:00, 4.63kB/s]"
+ }
+ },
+ "c80c54b2337e48c999e392b0c0daab65": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f7469fe429e74ab6971e41b17e2cb988",
+ "placeholder": "",
+ "style": "IPY_MODEL_41e30f39a9f34d65922779c7c2a8b98e",
+ "value": "Downloading: 100%"
+ }
+ },
+ "c8b82acda88245b686d57b496466a3e2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c8f2d3eaeeb3423dab3cdbb38e0d798e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c970626699134c519ec6b5defc4cbc95": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9e34107cd8864135ab07a414f94bd163",
+ "placeholder": "",
+ "style": "IPY_MODEL_51b1843f81e642c5ae0cb8c95240b1c4",
+ "value": " 1/1 [00:04<00:00, 4.04s/it]"
+ }
+ },
+ "cb1b5250e8ae4706a9d8dd0eb7abdc17": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "cb4012a29b144b0cb252c1976f5cd275": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "cb90869a6bc248008e2bc31e068d68d0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "cba65a7677624eaca65ab461e633dc0e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "cbcc10764b604098951e6371fbd6f480": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "cdc9a0d590614f98afac8eacaa6d3160": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ce944a90a4224ceb9961dc57c3d657f6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "cf248ff18ac9473890936393caddf805": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ButtonStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ButtonStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "button_color": null,
+ "font_weight": ""
+ }
+ },
+ "cf8518414b484434a82b5933f5709cad": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d050daf64b5944fdad48b963ad482f7c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d1b8438266994972a4be7bd20bcb7fc3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_4b2d00e46a7a4fe896703a52c010aaa6",
+ "max": 25541532,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_8e83e3877fb04eb6a158adceb983a85c",
+ "value": 25541532
+ }
+ },
+ "d224e3c405ed44ec91ed6bf5f2fff975": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b9de9edf003545b4bfc0664ca69f06e5",
+ "placeholder": "",
+ "style": "IPY_MODEL_f742ad0bbe694f719774d708a98c2a58",
+ "value": "Pushing dataset shards to the dataset hub: 100%"
+ }
+ },
+ "d37fb9ad76e64370a426f306919bedd0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d4595639599e4233856655c8fe255deb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2d23fb97540040bda093ff13dccaa713",
+ "placeholder": "",
+ "style": "IPY_MODEL_6997e0504b9d4cd6b2f16f41ce144d3c",
+ "value": " 83187/? [00:25<00:00, 4631.43ex/s]"
+ }
+ },
+ "d4adf3cee88e4482b20f9f0d3b87a36a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "info",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1b4a50a4aeea429795ff12ccf7e25ecc",
+ "max": 1,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_6433d64ddce540f3acacb9990c6f8b20",
+ "value": 1
+ }
+ },
+ "d5e3a11b22a54e84a0be282fb55f70f6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "d61e6c1731b540b6a03d794f8f6b2917": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "d73548881b594fd88f074b947b07c408": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "d8d482db758d4052afe8019ba59d816a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "d8e024f11dc9449ba30471f035633a20": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d8e87a5cbcbe421b9f1723280db3b821": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "d9a20f62b4604975802f84046fd79b3c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d9d8f94214874beab17893c14f34029d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "da9014bd6d9f452a9af2e3d7019bcc62": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_576a3745924e49148323cf37fdf23501",
+ "placeholder": "",
+ "style": "IPY_MODEL_bc2c75c27ed84a8394ec2e88b642f39d",
+ "value": "100%"
+ }
+ },
+ "dbdd78ff6785419bb71db5ede51f339a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_c11cebba65ff40ae83681d434ebe47ea",
+ "IPY_MODEL_4c2acf65c8df4e309e56763e263943c5",
+ "IPY_MODEL_2bb63d36fe704a728665dff3d042647f"
+ ],
+ "layout": "IPY_MODEL_813507347dc949f5b639fefb58f3f462"
+ }
+ },
+ "dc353060f608487fb9a9bf6e71d4c1c1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": "center",
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": "flex",
+ "flex": null,
+ "flex_flow": "column",
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": "50%"
+ }
+ },
+ "de2e317bc61f48e28baaaea2dd601b0d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a314270979984477a88ae66db93aa6c0",
+ "placeholder": "",
+ "style": "IPY_MODEL_444b2533d20c47cb9f24ce509cdd1f97",
+ "value": " 326M/326M [04:16<00:00, 1.11MB/s]"
+ }
+ },
+ "def607cd03ff47978cb0e4113e0fbb5d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_cdc9a0d590614f98afac8eacaa6d3160",
+ "placeholder": "",
+ "style": "IPY_MODEL_526dec5c46e64ffbb2a5de18d89f7f0d",
+ "value": " 2.98k/2.98k [07:44<?, ?B/s]"
+ }
+ },
+ "dfcd53bb9a6f4cf3b6cdc84f40bbcd51": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "e0775f61b5da4eb6b7fc377182cca761": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_445521858fcb43479b8ae9b4bf2d6cb0",
+ "placeholder": "",
+ "style": "IPY_MODEL_5fd3ecc4714140aab0aa62bce6c316c4",
+ "value": "Upload file language_model/5gram.bin: 100%"
+ }
+ },
+ "e08f20628d6e4553a05a30ede0cd4f5c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_962ef3466f0d4c779bf7f492956f8b77",
+ "placeholder": "",
+ "style": "IPY_MODEL_8533cf21f06b4fd289b60fe6cc9add37",
+ "value": "\n \n \nCopy a token from your Hugging Face tokens page and paste it below.\n \nImmediately click login after copying your token or it might be stored in plain text in this notebook file.\n "
+ }
+ },
+ "e1b77a2002554785b0ce7773feea287f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_bb60a920af7a429695df2971d9259ec6",
+ "max": 3055,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_5c64944d7f67438eba35a49ba21cd3a2",
+ "value": 3055
+ }
+ },
+ "e3dafae56ffb4a5cbc84d80bc7f30c87": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e45502db00094658b19bd14876220095": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_cb1b5250e8ae4706a9d8dd0eb7abdc17",
+ "placeholder": "",
+ "style": "IPY_MODEL_eb7d7f396db041e183f204960ad6347d",
+ "value": " 2.02k/2.02k [00:00<00:00, 43.1kB/s]"
+ }
+ },
+ "e4a39d6afc82422b980f2ebfe601d4bc": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e51ef080fb3d4189ab87e9c3a8030830": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e8fa47058b44474cbdca965fb8b1c522": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "e91a935aedfd4dd9a21b70494ff6f542": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_45215ac3e54a4cb08e83fa03b4d49976",
+ "placeholder": "",
+ "style": "IPY_MODEL_cb4012a29b144b0cb252c1976f5cd275",
+ "value": "Downloading: 100%"
+ }
+ },
+ "eb4ed31888734fe39dd96f9642abd38b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "eb7d7f396db041e183f204960ad6347d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "eb97689e4f4a46a9bd1691b56a2473d1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ebaad2c1a3d24f318b9906d74ac20f04": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ed723bd499654388b4717624baa2a288": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "eda966270a8042f68f9e16db670f13fe": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "edbdbc0a82854bde92e5abf6c8f87534": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c1931c4022d84d28815d460f72ef908b",
+ "placeholder": "",
+ "style": "IPY_MODEL_40a6127b87464cddba87f6c97c308594",
+ "value": " 5.36k/? [00:00<00:00, 12.9kB/s]"
+ }
+ },
+ "ee8e480112e443c3b5646a36d0eb8d6b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ef6e382ddb8f475981b9f2ea8312bf46": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1963287764bb48fa86c7437eb2dad75b",
+ "placeholder": "",
+ "style": "IPY_MODEL_d73548881b594fd88f074b947b07c408",
+ "value": " 116k/? [00:00<00:00, 10.6kB/s]"
+ }
+ },
+ "f01093cd46814afb9e7448b2c21e7d67": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f4334884958c4c179e8ed6d5adaea268": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "f663c5883c7243578f59e274fe6e0000": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "f692fa3e8bad4f359baaff49a70d5cd5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "f6d9a4de2f4b43baaddd1860f39603d5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f742ad0bbe694f719774d708a98c2a58": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "f7469fe429e74ab6971e41b17e2cb988": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "fa0aeb1c2ce149c8bfded42526893694": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "fb4d2faef4da4dc0ae1203f9376053af": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5a0353a8a1be47a1a42f1e05eb72eb68",
+ "max": 2084,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_88e5417fad3d442585c799cfd9d2f8f4",
+ "value": 2084
+ }
+ },
+ "fc9eb8784a9a4636a79e6f538e599727": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "PasswordModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "PasswordModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "PasswordView",
+ "continuous_update": true,
+ "description": "Token:",
+ "description_tooltip": null,
+ "disabled": false,
+ "layout": "IPY_MODEL_e51ef080fb3d4189ab87e9c3a8030830",
+ "placeholder": "",
+ "style": "IPY_MODEL_f663c5883c7243578f59e274fe6e0000",
+ "value": ""
+ }
+ },
+ "fdb329d825234d198d608c99eb1cfbf2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "fdeac6256f4b43468c00a4b251df955f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "fe77f2e7f6bc471b8ca41a655cda3f19": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ff3f3b40641e456caaa66eb280b61db1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d9a20f62b4604975802f84046fd79b3c",
+ "placeholder": "",
+ "style": "IPY_MODEL_9448492ea7b844d5ac3fcc4131defd06",
+ "value": " 1.18G/1.18G [02:13<00:00, 9.29MB/s]"
+ }
+ }
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}