--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event datasets: - common_voice metrics: - wer model-index: - name: wav2vec2-large-xlsr-53-urdu results: - task: type: automatic-speech-recognition # Required. Example: automatic-speech-recognition name: Urdu Speech Recognition # Optional. Example: Speech Recognition dataset: type: common_voice # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: Urdu # Required. Example: Common Voice zh-CN args: ur # Optional. Example: zh-CN metrics: - type: wer # Required. Example: wer value: 100 # Required. Example: 20.90 name: Test WER # Optional. Example: Test WER args: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 30 - mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order --- # wav2vec2-large-xlsr-53-urdu This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co./facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 2.6772 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 11.1125 | 3.33 | 40 | 3.2875 | 1.0 | | 3.2077 | 6.67 | 80 | 3.1499 | 1.0 | | 3.1725 | 10.0 | 120 | 3.1484 | 1.0 | | 3.148 | 13.33 | 160 | 3.0948 | 1.0 | | 3.1098 | 16.67 | 200 | 3.0897 | 1.0 | | 3.085 | 20.0 | 240 | 3.0609 | 1.0 | | 3.0315 | 23.33 | 280 | 2.9636 | 1.0 | | 2.9038 | 26.67 | 320 | 2.7838 | 1.0 | | 2.7599 | 30.0 | 360 | 2.6772 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3