--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event datasets: - common_voice metrics: - wer - cer model-index: - name: wav2vec2-large-xlsr-53-urdu results: - task: type: automatic-speech-recognition # Required. Example: automatic-speech-recognition name: Urdu Speech Recognition # Optional. Example: Speech Recognition dataset: type: common_voice # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: Urdu # Required. Example: Common Voice zh-CN args: ur # Optional. Example: zh-CN metrics: - type: wer # Required. Example: wer value: 66.2 # Required. Example: 20.90 name: Test WER # Optional. Example: Test WER args: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 50 - mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order - type: cer # Required. Example: wer value: 31.7 # Required. Example: 20.90 name: Test CER # Optional. Example: Test WER args: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 50 - mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order --- # wav2vec2-large-xlsr-53-urdu This model is a fine-tuned version of [m3hrdadfi/wav2vec2-large-xlsr-persian-v3](https://huggingface.co./m3hrdadfi/wav2vec2-large-xlsr-persian-v3) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.5727 - Wer: 0.6620 - Cer: 0.3166 More information needed The training and valid dataset is 0.58 hours. It was hard to train any model on lower number of so I decided to take Persian checkpoint and finetune the XLSR model. ## Training procedure Trained on m3hrdadfi/wav2vec2-large-xlsr-persian-v3 due to lesser number of samples. Persian and Urdu are quite similar. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 2.9707 | 8.33 | 100 | 1.2689 | 0.8463 | 0.4373 | | 0.746 | 16.67 | 200 | 1.2370 | 0.7214 | 0.3486 | | 0.3719 | 25.0 | 300 | 1.3885 | 0.6908 | 0.3381 | | 0.2411 | 33.33 | 400 | 1.4780 | 0.6690 | 0.3186 | | 0.1841 | 41.67 | 500 | 1.5557 | 0.6629 | 0.3241 | | 0.165 | 50.0 | 600 | 1.5727 | 0.6620 | 0.3166 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3