--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer - cer model-index: - name: wav2vec2-60-urdu results: - task: type: automatic-speech-recognition # Required. Example: automatic-speech-recognition name: Speech Recognition # Optional. Example: Speech Recognition dataset: type: mozilla-foundation/common_voice_7_0 # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: common-voice # Required. Example: Common Voice zh-CN args: ur # Optional. Example: zh-CN metrics: - type: wer # Required. Example: wer value: 59.1 # Required. Example: 20.90 name: Test WER # Optional. Example: Test WER args: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 50 - mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order - type: cer # Required. Example: wer value: 33.1 # Required. Example: 20.90 name: Test CER # Optional. Example: Test WER args: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 50 - mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order --- # wav2vec2-large-xlsr-53-urdu This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-urdu-urm-60](https://huggingface.co./Harveenchadha/vakyansh-wav2vec2-urdu-urm-60) on the common_voice dataset. It achieves the following results on the evaluation set: - Wer: 0.5913 - Cer: 0.3310 ## Model description The training and valid dataset is 0.58 hours. It was hard to train any model on lower number of so I decided to take vakyansh-wav2vec2-urdu-urm-60 checkpoint and finetune the wav2vec2 model. ## Training procedure Trained on Harveenchadha/vakyansh-wav2vec2-urdu-urm-60 due to lesser number of samples. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 12.6045 | 8.33 | 100 | 8.4997 | 0.6978 | 0.3923 | | 1.3367 | 16.67 | 200 | 5.0015 | 0.6515 | 0.3556 | | 0.5344 | 25.0 | 300 | 9.3687 | 0.6393 | 0.3625 | | 0.2922 | 33.33 | 400 | 9.2381 | 0.6236 | 0.3432 | | 0.1867 | 41.67 | 500 | 6.2150 | 0.6035 | 0.3448 | | 0.1166 | 50.0 | 600 | 6.4496 | 0.5913 | 0.3310 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3