kingabzpro commited on
Commit
ed7e4ac
1 Parent(s): 90342ae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -24
README.md CHANGED
@@ -1,12 +1,56 @@
1
  ---
 
 
 
2
  tags:
3
- - generated_from_trainer
 
4
  datasets:
5
- - common_voice
 
 
 
6
  model-index:
7
- - name: wav2vec2-large-xlsr-53-urdu
8
- results: []
9
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
  should probably proofread and complete it, then remove this comment. -->
@@ -15,23 +59,15 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-urdu-urm-60](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-urdu-urm-60) on the common_voice dataset.
17
  It achieves the following results on the evaluation set:
18
- - Loss: 11.1562
19
  - Wer: 0.5921
20
  - Cer: 0.3288
21
 
22
  ## Model description
23
-
24
- More information needed
25
-
26
- ## Intended uses & limitations
27
-
28
- More information needed
29
-
30
- ## Training and evaluation data
31
-
32
- More information needed
33
 
34
  ## Training procedure
 
 
35
 
36
  ### Training hyperparameters
37
 
@@ -50,14 +86,14 @@ The following hyperparameters were used during training:
50
 
51
  ### Training results
52
 
53
- | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
54
- |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
55
- | 13.83 | 8.33 | 100 | 6.3080 | 0.6611 | 0.3639 |
56
- | 1.0144 | 16.67 | 200 | 7.7685 | 0.6498 | 0.3731 |
57
- | 0.5801 | 25.0 | 300 | 7.8429 | 0.6454 | 0.3767 |
58
- | 0.3344 | 33.33 | 400 | 5.9906 | 0.6349 | 0.3548 |
59
- | 0.1606 | 41.67 | 500 | 10.8584 | 0.6105 | 0.3348 |
60
- | 0.0974 | 50.0 | 600 | 11.1562 | 0.5921 | 0.3288 |
61
 
62
 
63
  ### Framework versions
 
1
  ---
2
+ language:
3
+ - ur
4
+ license: apache-2.0
5
  tags:
6
+ - automatic-speech-recognition
7
+ - robust-speech-event
8
  datasets:
9
+ - common_voice_v7
10
+ metrics:
11
+ - wer
12
+ - cer
13
  model-index:
14
+ - name: wav2vec2-60-urdu
15
+ results:
16
+ - task:
17
+ type: automatic-speech-recognition # Required. Example: automatic-speech-recognition
18
+ name: Urdu Speech Recognition # Optional. Example: Speech Recognition
19
+ dataset:
20
+ type: common_voice # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
21
+ name: Urdu # Required. Example: Common Voice zh-CN
22
+ args: ur # Optional. Example: zh-CN
23
+ metrics:
24
+ - type: wer # Required. Example: wer
25
+ value: 59.8 # Required. Example: 20.90
26
+ name: Test WER # Optional. Example: Test WER
27
+ args:
28
+ - learning_rate: 0.0003
29
+ - train_batch_size: 16
30
+ - eval_batch_size: 8
31
+ - seed: 42
32
+ - gradient_accumulation_steps: 2
33
+ - total_train_batch_size: 32
34
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
35
+ - lr_scheduler_type: linear
36
+ - lr_scheduler_warmup_steps: 200
37
+ - num_epochs: 50
38
+ - mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order
39
+ - type: cer # Required. Example: wer
40
+ value: 32.9 # Required. Example: 20.90
41
+ name: Test CER # Optional. Example: Test WER
42
+ args:
43
+ - learning_rate: 0.0003
44
+ - train_batch_size: 16
45
+ - eval_batch_size: 8
46
+ - seed: 42
47
+ - gradient_accumulation_steps: 2
48
+ - total_train_batch_size: 32
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_steps: 200
52
+ - num_epochs: 50
53
+ - mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order---
54
 
55
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
56
  should probably proofread and complete it, then remove this comment. -->
 
59
 
60
  This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-urdu-urm-60](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-urdu-urm-60) on the common_voice dataset.
61
  It achieves the following results on the evaluation set:
 
62
  - Wer: 0.5921
63
  - Cer: 0.3288
64
 
65
  ## Model description
66
+ The training and valid dataset is 0.58 hours. It was hard to train any model on lower number of so I decided to take Urdu-60 checkpoint and finetune the wav2vwc2 model.
 
 
 
 
 
 
 
 
 
67
 
68
  ## Training procedure
69
+ Trained on Harveenchadha/vakyansh-wav2vec2-urdu-urm-60 due to lesser number of samples.
70
+
71
 
72
  ### Training hyperparameters
73
 
 
86
 
87
  ### Training results
88
 
89
+ | Training Loss | Epoch | Step | Wer | Cer |
90
+ |:-------------:|:-----:|:----:|:------:|:------:|
91
+ | 13.83 | 8.33 | 100 | 0.6611 | 0.3639 |
92
+ | 1.0144 | 16.67 | 200 | 0.6498 | 0.3731 |
93
+ | 0.5801 | 25.0 | 300 | 0.6454 | 0.3767 |
94
+ | 0.3344 | 33.33 | 400 | 0.6349 | 0.3548 |
95
+ | 0.1606 | 41.67 | 500 | 0.6105 | 0.3348 |
96
+ | 0.0974 | 50.0 | 600 | 0.5921 | 0.3288 |
97
 
98
 
99
  ### Framework versions