kingabzpro commited on
Commit
dc2f6b9
1 Parent(s): fea60da

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -59
README.md CHANGED
@@ -1,56 +1,11 @@
1
  ---
2
- language:
3
- - ur
4
- license: apache-2.0
5
  tags:
6
- - automatic-speech-recognition
7
- - robust-speech-event
8
  datasets:
9
  - common_voice
10
- metrics:
11
- - wer
12
- - cer
13
  model-index:
14
  - name: wav2vec2-large-xlsr-53-urdu
15
- results:
16
- - task:
17
- type: automatic-speech-recognition # Required. Example: automatic-speech-recognition
18
- name: Urdu Speech Recognition # Optional. Example: Speech Recognition
19
- dataset:
20
- type: common_voice # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
21
- name: Urdu # Required. Example: Common Voice zh-CN
22
- args: ur # Optional. Example: zh-CN
23
- metrics:
24
- - type: wer # Required. Example: wer
25
- value: 57.7 # Required. Example: 20.90
26
- name: Test WER # Optional. Example: Test WER
27
- args:
28
- - learning_rate: 0.0003
29
- - train_batch_size: 16
30
- - eval_batch_size: 8
31
- - seed: 42
32
- - gradient_accumulation_steps: 2
33
- - total_train_batch_size: 32
34
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
35
- - lr_scheduler_type: linear
36
- - lr_scheduler_warmup_steps: 200
37
- - num_epochs: 50
38
- - mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order
39
- - type: cer # Required. Example: wer
40
- value: 33.8 # Required. Example: 20.90
41
- name: Test CER # Optional. Example: Test WER
42
- args:
43
- - learning_rate: 0.0003
44
- - train_batch_size: 16
45
- - eval_batch_size: 8
46
- - seed: 42
47
- - gradient_accumulation_steps: 2
48
- - total_train_batch_size: 32
49
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
- - lr_scheduler_type: linear
51
- - lr_scheduler_warmup_steps: 200
52
- - num_epochs: 50
53
- - mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order
54
  ---
55
 
56
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -60,17 +15,21 @@ should probably proofread and complete it, then remove this comment. -->
60
 
61
  This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-urdu-urm-60](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-urdu-urm-60) on the common_voice dataset.
62
  It achieves the following results on the evaluation set:
63
- - Loss: 11.4593
64
- - Wer: 0.5772
65
- - Cer: 0.3384
66
 
67
  ## Model description
68
 
69
- The training and valid dataset is 0.58 hours. It was hard to train any model on lower number of so I decided to take Urdu checkpoint and finetune the XLSR model.
 
 
 
 
70
 
71
  ## Training and evaluation data
72
 
73
- Trained on Harveenchadha/vakyansh-wav2vec2-urdu-urm-60 due to lesser number of samples. Persian and Urdu are quite similar.
74
 
75
  ## Training procedure
76
 
@@ -86,19 +45,16 @@ The following hyperparameters were used during training:
86
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
87
  - lr_scheduler_type: linear
88
  - lr_scheduler_warmup_steps: 200
89
- - num_epochs: 50
90
  - mixed_precision_training: Native AMP
91
 
92
  ### Training results
93
 
94
  | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
95
  |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
96
- | 13.2136 | 8.33 | 100 | 9.5424 | 0.7672 | 0.4381 |
97
- | 2.6996 | 16.67 | 200 | 8.4317 | 0.6661 | 0.3620 |
98
- | 1.371 | 25.0 | 300 | 9.5518 | 0.6443 | 0.3701 |
99
- | 0.639 | 33.33 | 400 | 9.4132 | 0.6129 | 0.3609 |
100
- | 0.4452 | 41.67 | 500 | 10.8330 | 0.5920 | 0.3473 |
101
- | 0.3233 | 50.0 | 600 | 11.4593 | 0.5772 | 0.3384 |
102
 
103
 
104
  ### Framework versions
 
1
  ---
 
 
 
2
  tags:
3
+ - generated_from_trainer
 
4
  datasets:
5
  - common_voice
 
 
 
6
  model-index:
7
  - name: wav2vec2-large-xlsr-53-urdu
8
+ results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
15
 
16
  This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-urdu-urm-60](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-urdu-urm-60) on the common_voice dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 9.8476
19
+ - Wer: 0.6253
20
+ - Cer: 0.3456
21
 
22
  ## Model description
23
 
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
 
30
  ## Training and evaluation data
31
 
32
+ More information needed
33
 
34
  ## Training procedure
35
 
 
45
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
  - lr_scheduler_type: linear
47
  - lr_scheduler_warmup_steps: 200
48
+ - num_epochs: 30
49
  - mixed_precision_training: Native AMP
50
 
51
  ### Training results
52
 
53
  | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
54
  |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
55
+ | 13.7919 | 8.33 | 100 | 7.9423 | 0.6742 | 0.3737 |
56
+ | 1.4283 | 16.67 | 200 | 3.2921 | 0.6681 | 0.3707 |
57
+ | 0.4868 | 25.0 | 300 | 9.8476 | 0.6253 | 0.3456 |
 
 
 
58
 
59
 
60
  ### Framework versions