kingabzpro commited on
Commit
a04c2fe
1 Parent(s): 7c41b61

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -8
README.md CHANGED
@@ -1,11 +1,56 @@
1
  ---
 
 
 
2
  tags:
3
- - generated_from_trainer
 
4
  datasets:
5
  - common_voice
 
 
 
6
  model-index:
7
  - name: wav2vec2-large-xlsr-53-urdu
8
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -21,15 +66,11 @@ It achieves the following results on the evaluation set:
21
 
22
  ## Model description
23
 
24
- More information needed
25
-
26
- ## Intended uses & limitations
27
-
28
- More information needed
29
 
30
  ## Training and evaluation data
31
 
32
- More information needed
33
 
34
  ## Training procedure
35
 
 
1
  ---
2
+ language:
3
+ - ur
4
+ license: apache-2.0
5
  tags:
6
+ - automatic-speech-recognition
7
+ - robust-speech-event
8
  datasets:
9
  - common_voice
10
+ metrics:
11
+ - wer
12
+ - cer
13
  model-index:
14
  - name: wav2vec2-large-xlsr-53-urdu
15
+ results:
16
+ - task:
17
+ type: automatic-speech-recognition # Required. Example: automatic-speech-recognition
18
+ name: Urdu Speech Recognition # Optional. Example: Speech Recognition
19
+ dataset:
20
+ type: common_voice # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
21
+ name: Urdu # Required. Example: Common Voice zh-CN
22
+ args: ur # Optional. Example: zh-CN
23
+ metrics:
24
+ - type: wer # Required. Example: wer
25
+ value: 57.7 # Required. Example: 20.90
26
+ name: Test WER # Optional. Example: Test WER
27
+ args:
28
+ - learning_rate: 0.0003
29
+ - train_batch_size: 16
30
+ - eval_batch_size: 8
31
+ - seed: 42
32
+ - gradient_accumulation_steps: 2
33
+ - total_train_batch_size: 32
34
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
35
+ - lr_scheduler_type: linear
36
+ - lr_scheduler_warmup_steps: 200
37
+ - num_epochs: 50
38
+ - mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order
39
+ - type: cer # Required. Example: wer
40
+ value: 33.8 # Required. Example: 20.90
41
+ name: Test CER # Optional. Example: Test WER
42
+ args:
43
+ - learning_rate: 0.0003
44
+ - train_batch_size: 16
45
+ - eval_batch_size: 8
46
+ - seed: 42
47
+ - gradient_accumulation_steps: 2
48
+ - total_train_batch_size: 32
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_steps: 200
52
+ - num_epochs: 50
53
+ - mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order
54
  ---
55
 
56
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
66
 
67
  ## Model description
68
 
69
+ The training and valid dataset is 0.58 hours. It was hard to train any model on lower number of so I decided to take Urdu checkpoint and finetune the XLSR model.
 
 
 
 
70
 
71
  ## Training and evaluation data
72
 
73
+ Trained on Harveenchadha/vakyansh-wav2vec2-urdu-urm-60 due to lesser number of samples. Persian and Urdu are quite similar.
74
 
75
  ## Training procedure
76