kingabzpro commited on
Commit
1b3576a
1 Parent(s): d49441f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -11
README.md CHANGED
@@ -1,11 +1,57 @@
1
  ---
 
 
 
 
2
  tags:
3
- - generated_from_trainer
 
4
  datasets:
5
  - common_voice
 
 
 
6
  model-index:
7
  - name: wav2vec2-large-xlsr-53-urdu
8
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -19,19 +65,12 @@ It achieves the following results on the evaluation set:
19
  - Wer: 0.6620
20
  - Cer: 0.3166
21
 
22
- ## Model description
23
-
24
- More information needed
25
-
26
- ## Intended uses & limitations
27
-
28
- More information needed
29
-
30
- ## Training and evaluation data
31
 
32
  More information needed
 
33
 
34
  ## Training procedure
 
35
 
36
  ### Training hyperparameters
37
 
 
1
  ---
2
+ language:
3
+ - ur
4
+
5
+ license: apache-2.0
6
  tags:
7
+ - automatic-speech-recognition
8
+ - robust-speech-event
9
  datasets:
10
  - common_voice
11
+ metrics:
12
+ - wer
13
+ - cer
14
  model-index:
15
  - name: wav2vec2-large-xlsr-53-urdu
16
+ results:
17
+ - task:
18
+ type: automatic-speech-recognition # Required. Example: automatic-speech-recognition
19
+ name: Urdu Speech Recognition # Optional. Example: Speech Recognition
20
+ dataset:
21
+ type: common_voice # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
22
+ name: Urdu # Required. Example: Common Voice zh-CN
23
+ args: ur # Optional. Example: zh-CN
24
+ metrics:
25
+ - type: wer # Required. Example: wer
26
+ value: 66.2 # Required. Example: 20.90
27
+ name: Test WER # Optional. Example: Test WER
28
+ args:
29
+ - learning_rate: 0.0003
30
+ - train_batch_size: 16
31
+ - eval_batch_size: 8
32
+ - seed: 42
33
+ - gradient_accumulation_steps: 2
34
+ - total_train_batch_size: 32
35
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
36
+ - lr_scheduler_type: linear
37
+ - lr_scheduler_warmup_steps: 200
38
+ - num_epochs: 50
39
+ - mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order
40
+ - type: cer # Required. Example: wer
41
+ value: 31.7 # Required. Example: 20.90
42
+ name: Test CER # Optional. Example: Test WER
43
+ args:
44
+ - learning_rate: 0.0003
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 8
47
+ - seed: 42
48
+ - gradient_accumulation_steps: 2
49
+ - total_train_batch_size: 32
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_steps: 200
53
+ - num_epochs: 50
54
+ - mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order
55
  ---
56
 
57
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
65
  - Wer: 0.6620
66
  - Cer: 0.3166
67
 
 
 
 
 
 
 
 
 
 
68
 
69
  More information needed
70
+ The training and valid dataset is 0.58 hours. It was hard to train any model on lower number of so I decided to take Persian checkpoint and finetune the XLSR model.
71
 
72
  ## Training procedure
73
+ Trained on m3hrdadfi/wav2vec2-large-xlsr-persian-v3 due to lesser number of samples. Persian and Urdu are quite similar.
74
 
75
  ### Training hyperparameters
76