--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-3B tags: - generated_from_trainer metrics: - accuracy model-index: - name: code-knowledge-eval results: [] --- # **Llama-3.2-3B-Code-Knowledge-Value-Eval** This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co./meta-llama/Llama-3.2-3B) on the [kimsan0622/code-knowledge-eval](https://huggingface.co./datasets/kimsan0622/code-knowledge-eval) dataset. It achieves the following results on the evaluation set: - Loss: 0.9977 - Accuracy: 0.5552 ## **Model Description** The model trained on the **Code Knowledge Value Evaluation Dataset** is designed to assess the educational and knowledge value of code snippets. It leverages patterns and contextual information from a large collection of open-source code, sourced from the `bigcode/the-stack` repository. By analyzing these code samples, the model can evaluate their utility in teaching coding concepts, solving problems, and improving developer education. The model focuses on understanding the structure, syntax, and logic of various programming languages, enabling it to provide insights into the learning potential and technical depth of different code samples. The dataset used for training consists of 22,786 samples for training, 4,555 for validation, and 18,232 for testing, ensuring that the model is both robust and well-generalized across different coding contexts. ## **Intended Uses & Limitations** ### **Intended Uses**: 1. **Automated Code Review**: The model can be applied in automated systems to assess the knowledge value of code during code review processes. It can help identify areas where code could be optimized for better readability, maintainability, and educational impact. 2. **Educational Feedback**: For instructors and educational platforms, the model can offer feedback on the effectiveness of code samples used in teaching, helping to improve curriculum materials and select code that best conveys core programming concepts. 3. **Curriculum Development**: The model can aid in designing coding courses or instructional materials by suggesting code examples that have higher educational value, supporting a more effective learning experience. 4. **Technical Skill Assessment**: Organizations or platforms can use the model to assess the complexity and educational value of code submissions in coding challenges or exams. ### **Limitations**: 1. **Narrow Scope in Knowledge Evaluation**: The model is specialized in evaluating code from an educational standpoint, focusing primarily on learning potential rather than production-level code quality (e.g., performance optimization or security). 2. **Language and Domain Limitations**: Since the dataset is sourced from `bigcode/the-stack`, it may not cover all programming languages or specialized domains. The model may perform less effectively in underrepresented languages or niche coding styles not well-represented in the dataset. 3. **Not Suitable for All Educational Levels**: While the model is designed to evaluate code for educational purposes, its outputs may be better suited for certain levels (e.g., beginner or intermediate coding), and its recommendations might not fully cater to advanced or highly specialized learners. ## How to use this model? ```python import torch import numpy as np from transformers import AutoTokenizer, AutoModelForSequenceClassification # Define the model name or path for loading the tokenizer and model model_name_or_path = "kimsan0622/Llama-3.2-3B-Code-Knowledge-Value-Eval" # Load the tokenizer from the pre-trained model tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) # Load the pre-trained model for sequence classification and map it to the first CUDA device model = AutoModelForSequenceClassification.from_pretrained( model_name_or_path, device_map="cuda:0", ) # Example code snippet to be evaluated code = [ """ import torch import numpy as np from transformers import AutoTokenizer, AutoModelForSequenceClassification # Define the model name or path for loading the tokenizer and model model_name_or_path = "kimsan0622/Llama-3.2-1B-Code-Knowledge-Value-Eval" # Load the tokenizer from the pre-trained model tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) # Load the pre-trained model for sequence classification and map it to the first CUDA device model = AutoModelForSequenceClassification.from_pretrained( model_name_or_path, device_map="cuda:0", ) # Example code snippet to be evaluated code = ["code 1"] # Tokenize the input code, setting max length, padding, and truncation batch = tokenizer(code, max_length=1024, padding=True, truncation=True, return_tensors="pt") # Perform inference with the model, without computing gradients (for faster inference) with torch.no_grad(): # Pass the input IDs and attention mask to the model, using the CUDA device res = model( input_ids=batch["input_ids"].to("cuda:0"), attention_mask=batch["attention_mask"].to("cuda:0"), ) # Move the logits to the CPU, convert them to a numpy array preds = res.logits.cpu().numpy() # Get the predicted class by taking the argmax of the logits across the classification axis preds = np.argmax(preds, axis=1).tolist() """ ] # Tokenize the input code, setting max length, padding, and truncation batch = tokenizer(code, max_length=1024, padding=True, truncation=True, return_tensors="pt") # Perform inference with the model, without computing gradients (for faster inference) with torch.no_grad(): # Pass the input IDs and attention mask to the model, using the CUDA device res = model( input_ids=batch["input_ids"].to("cuda:0"), attention_mask=batch["attention_mask"].to("cuda:0"), ) # Move the logits to the CPU, convert them to a numpy array preds = res.logits.cpu().numpy() # Get the predicted class by taking the argmax of the logits across the classification axis preds = np.argmax(preds, axis=1).tolist() print(preds) ``` ### 8 Bit quantization ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, BitsAndBytesConfig # Define the model name or path for loading the model model_name_or_path = "kimsan0622/Llama-3.2-3B-Code-Knowledge-Value-Eval" # Configure the model to load in 8-bit precision for memory efficiency bnb_config = BitsAndBytesConfig(load_in_8bit=True) # Load the pre-trained model for sequence classification with quantization for 8-bit precision # This helps reduce memory usage, particularly for large models, and map it to the first CUDA device model = AutoModelForSequenceClassification.from_pretrained( model_name_or_path, quantization_config=bnb_config, # Apply 8-bit quantization device_map="cuda:0", # Map the model to the first CUDA device ) ``` ### 4 Bit quntization ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, BitsAndBytesConfig import torch # Define the model name or path for loading the model model_name_or_path = "kimsan0622/Llama-3.2-3B-Code-Knowledge-Value-Eval" # Define configuration parameters for 4-bit quantization bnb_config_params = { "bnb_4bit_quant_type": "fp4", # Use FP4 for 4-bit quantization type "bnb_4bit_compute_dtype": torch.bfloat16, # Use bfloat16 for computation to balance performance and precision "bnb_4bit_use_double_quant": False, # Disable double quantization, which is typically used to further reduce precision "bnb_4bit_quant_storage": torch.bfloat16, # Store quantized values in bfloat16 format } # Configure the model to load in 4-bit precision for memory and performance optimization bnb_config = BitsAndBytesConfig(load_in_4bit=True, **bnb_config_params) # Load the pre-trained model for sequence classification with 4-bit quantization settings # This reduces memory usage while still maintaining reasonable accuracy, mapping the model to the first CUDA device model = AutoModelForSequenceClassification.from_pretrained( model_name_or_path, quantization_config=bnb_config, # Apply 4-bit quantization configuration device_map="cuda:0", # Map the model to the first CUDA device ) ``` ## Training and evaluation data [kimsan0622/code-knowledge-eval](https://huggingface.co./datasets/kimsan0622/code-knowledge-eval) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.1115 | 0.9993 | 178 | 1.0997 | 0.4900 | | 0.9391 | 1.9986 | 356 | 0.9977 | 0.5552 | | 0.6717 | 2.9979 | 534 | 1.1785 | 0.5431 | | 0.2989 | 3.9972 | 712 | 1.8204 | 0.5405 | | 0.133 | 4.9965 | 890 | 2.5260 | 0.5482 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.0 - Datasets 2.20.0 - Tokenizers 0.19.1 ## Test set results ### Confusion matrix | **y_true** |**pred_0**|**pred_1**|**pred_2**|**pred_3**|**pred_4**|**pred_5**| |:----------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:| | 0 | 940 | 268 | 107 | 57 | 5 | 0 | | 1 | 316 | 344 | 338 | 221 | 24 | 1 | | 2 | 132 | 251 | 510 | 738 | 135 | 8 | | 3 | 43 | 128 | 458 | 2674 | 1565 | 57 | | 4 | 8 | 15 | 74 | 1248 | 4229 | 750 | | 5 | 0 | 2 | 0 | 29 | 1094 | 1463 | ### Classification report | | **precision** | **recall** | **f1-score** | **support** | |:-------------:|:-------------:|:----------:|:------------:|:-----------:| | 0 | 0.65 | 0.68 | 0.67 | 1377 | | 1 | 0.34 | 0.28 | 0.31 | 1244 | | 2 | 0.34 | 0.29 | 0.31 | 1774 | | 3 | 0.54 | 0.54 | 0.54 | 4925 | | 4 | 0.60 | 0.67 | 0.63 | 6324 | | 5 | 0.64 | 0.57 | 0.60 | 2588 | | **accuracy** | | | 0.56 | 18232 | | **macro avg**| 0.52 | 0.50 | 0.51 | 18232 | | **weighted avg** | 0.55 | 0.56 | 0.55 | 18232 | ## 8 Bit quantization model ### Confusion matrix | **y_true** |**pred_0**|**pred_1**|**pred_2**|**pred_3**|**pred_4**|**pred_5**| |-------|-------|-------|-------|-------|-------|-------| | 0 | 933 | 272 | 111 | 56 | 5 | 0 | | 1 | 320 | 333 | 340 | 224 | 25 | 2 | | 2 | 129 | 244 | 502 | 752 | 139 | 8 | | 3 | 43 | 119 | 463 | 2627 | 1604 | 69 | | 4 | 7 | 15 | 67 | 1227 | 4191 | 817 | | 5 | 0 | 2 | 0 | 30 | 1034 | 1522 | ### Classification report | **y_true** | **precision** | **recall** | **f1-score** | **support** | |:-------------:|:-------------:|:----------:|:------------:|:-----------:| | 0 | 0.65 | 0.68 | 0.66 | 1377 | | 1 | 0.34 | 0.27 | 0.30 | 1244 | | 2 | 0.34 | 0.28 | 0.31 | 1774 | | 3 | 0.53 | 0.53 | 0.53 | 4925 | | 4 | 0.60 | 0.66 | 0.63 | 6324 | | 5 | 0.63 | 0.59 | 0.61 | 2588 | | **accuracy** | | | 0.55 | 18232 | | **macro avg**| 0.52 | 0.50 | 0.51 | 18232 | | **weighted avg** | 0.55 | 0.55 | 0.55 | 18232 | ## 4 Bit quantization model ### Confusion matrix | **y_true** |**pred_0**|**pred_1**|**pred_2**|**pred_3**|**pred_4**|**pred_5**| |-------|-------|-------|-------|-------|-------|-------| | 0 | 695 | 581 | 42 | 55 | 4 | 0 | | 1 | 151 | 662 | 190 | 215 | 24 | 2 | | 2 | 53 | 485 | 353 | 716 | 159 | 8 | | 3 | 20 | 277 | 335 | 2446 | 1765 | 82 | | 4 | 4 | 31 | 60 | 1104 | 4211 | 914 | | 5 | 0 | 2 | 0 | 24 | 934 | 1628 | ### Classification report | | **precision** | **recall** | **f1-score** | **support** | |:-------------:|:-------------:|:----------:|:------------:|:-----------:| | 0 | 0.75 | 0.50 | 0.60 | 1377 | | 1 | 0.32 | 0.53 | 0.40 | 1244 | | 2 | 0.36 | 0.20 | 0.26 | 1774 | | 3 | 0.54 | 0.50 | 0.52 | 4925 | | 4 | 0.59 | 0.67 | 0.63 | 6324 | | 5 | 0.62 | 0.63 | 0.62 | 2588 | | **accuracy** | | | 0.55 | 18232 | | **macro avg**| 0.53 | 0.50 | 0.51 | 18232 | | **weighted avg** | 0.55 | 0.55 | 0.54 | 18232 |