--- language: - ja license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Japanese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 ja type: mozilla-foundation/common_voice_11_0 config: ja split: test args: ja metrics: - name: Wer type: wer value: 13.768684731417652 --- # Whisper Small Japanese This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the mozilla-foundation/common_voice_11_0 ja dataset. It achieves the following results on the evaluation set: - Loss: 0.2543 - Wer: 13.7687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2515 | 1.06 | 200 | 0.2881 | 16.9442 | | 0.2212 | 2.12 | 400 | 0.2616 | 14.6884 | | 0.0774 | 4.04 | 600 | 0.2543 | 13.7687 | | 0.0564 | 5.09 | 800 | 0.2731 | 13.9769 | | 0.0221 | 7.01 | 1000 | 0.2814 | 13.9700 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2