--- base_model: [] library_name: transformers tags: - mergekit - merge - llama 3 - 70b - arimas - story - roleplay - rp --- # EXL2 quants of [ryzen88/Llama-3-70b-Arimas-story-RP-V1.6](https://huggingface.co./ryzen88/Llama-3-70b-Arimas-story-RP-V1.6) [3.00 bits per weight](https://huggingface.co./kim512/Llama-3-70b-Arimas-story-RP-V1.6-3.0bpw-h6-exl2) [3.50 bits per weight](https://huggingface.co./kim512/Llama-3-70b-Arimas-story-RP-V1.6-3.5bpw-h6-exl2) [4.00 bits per weight](https://huggingface.co./kim512/Llama-3-70b-Arimas-story-RP-V1.6-4.0bpw-h6-exl2) [4.50 bits per weight](https://huggingface.co./kim512/Llama-3-70b-Arimas-story-RP-V1.6-4.5bpw-h6-exl2) [6.00 bits per weight](https://huggingface.co./kim512/Llama-3-70b-Arimas-story-RP-V1.6-6.0bpw-h6-exl2) [8.00 bits per weight](https://huggingface.co./kim512/Llama-3-70b-Arimas-story-RP-V1.6-8.0bpw-h8-exl2) Created using the defaults from exllamav2 1.4.0 convert.py 3.0bpw to 6.0bpw head bits = 6 8.0bpw head bits = 8 length = 8192 dataset rows = 200 measurement rows = 32 measurement length = 8192 # model Llama-3-70b-Arimas-story-RP-V1.6 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details I Greatly expanded the amount of models used in this merge, experimented a lot with different idea's. This version feels a lot more convincing than V1.5 Hopefully the long context window will also remain strong after Quants. Because of the many merges switched back from BFloat to Float. Tried breadcrums without the Ties, that went very poorly. ### Merge Method This model was merged using the breadcrumbs_ties merge method using I:\Llama-3-70B-Instruct-Gradient-262k as a base. ### Models Merged The following models were included in the merge: * \Smaug-Llama-3-70B-Instruct * \Meta-LLama-3-Cat-Smaug-LLama-70b * \Meta-LLama-3-Cat-A-LLama-70b * \Llama-3-70B-Synthia-v3.5 * \Llama-3-70B-Instruct-Gradient-524k * \Llama-3-70B-Instruct-Gradient-262k * \Tess-2.0-Llama-3-70B-v0.2 * \Llama-3-Lumimaid-70B-v0.1-alt ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: \Llama-3-70B-Instruct-Gradient-262k parameters: weight: 0.25 density: 0.90 gamma: 0.01 - model: \Meta-LLama-3-Cat-Smaug-LLama-70b parameters: weight: 0.28 density: 0.90 gamma: 0.01 - model: \Llama-3-Lumimaid-70B-v0.1-alt parameters: weight: 0.15 density: 0.90 gamma: 0.01 - model: \Tess-2.0-Llama-3-70B-v0.2 parameters: weight: 0.06 density: 0.90 gamma: 0.01 - model: \Smaug-Llama-3-70B-Instruct parameters: weight: 0.04 density: 0.90 gamma: 0.01 - model: \Llama-3-70B-Synthia-v3.5 parameters: weight: 0.05 density: 0.90 gamma: 0.01 - model: \Llama-3-70B-Instruct-Gradient-524k parameters: weight: 0.03 density: 0.90 gamma: 0.01 - model: \Meta-LLama-3-Cat-A-LLama-70b parameters: weight: 0.14 density: 0.90 gamma: 0.01 merge_method: breadcrumbs_ties base_model: I:\Llama-3-70B-Instruct-Gradient-262k dtype: float16 ```