--- library_name: transformers tags: - generated_from_trainer model-index: - name: image-quality-mobilenetv3 results: [] base_model: - timm/mobilenetv3_large_100.ra_in1k pipeline_tag: image-classification --- # image-quality-mobilenetv3 This model is a fine-tuned version of [](https://huggingface.co./) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0123 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.3424 | 1.0 | 36 | 3.0847 | | 0.6173 | 2.0 | 72 | 0.4851 | | 0.1393 | 3.0 | 108 | 0.0988 | | 0.0575 | 4.0 | 144 | 0.0536 | | 0.0388 | 5.0 | 180 | 0.0377 | | 0.0324 | 6.0 | 216 | 0.0320 | | 0.0291 | 7.0 | 252 | 0.0312 | | 0.0255 | 8.0 | 288 | 0.0266 | | 0.023 | 9.0 | 324 | 0.0232 | | 0.0213 | 10.0 | 360 | 0.0214 | | 0.0205 | 11.0 | 396 | 0.0209 | | 0.0193 | 12.0 | 432 | 0.0198 | | 0.0183 | 13.0 | 468 | 0.0191 | | 0.0185 | 14.0 | 504 | 0.0179 | | 0.0175 | 15.0 | 540 | 0.0171 | | 0.0166 | 16.0 | 576 | 0.0186 | | 0.0161 | 17.0 | 612 | 0.0167 | | 0.0164 | 18.0 | 648 | 0.0163 | | 0.0152 | 19.0 | 684 | 0.0160 | | 0.0149 | 20.0 | 720 | 0.0156 | | 0.0151 | 21.0 | 756 | 0.0159 | | 0.0147 | 22.0 | 792 | 0.0153 | | 0.0154 | 23.0 | 828 | 0.0162 | | 0.0147 | 24.0 | 864 | 0.0150 | | 0.0144 | 25.0 | 900 | 0.0147 | | 0.0143 | 26.0 | 936 | 0.0144 | | 0.0144 | 27.0 | 972 | 0.0139 | | 0.0152 | 28.0 | 1008 | 0.0150 | | 0.0129 | 29.0 | 1044 | 0.0134 | | 0.0128 | 30.0 | 1080 | 0.0135 | | 0.0126 | 31.0 | 1116 | 0.0141 | | 0.0131 | 32.0 | 1152 | 0.0145 | | 0.0133 | 33.0 | 1188 | 0.0131 | | 0.0124 | 34.0 | 1224 | 0.0133 | | 0.013 | 35.0 | 1260 | 0.0148 | | 0.0121 | 36.0 | 1296 | 0.0129 | | 0.0116 | 37.0 | 1332 | 0.0127 | | 0.0124 | 38.0 | 1368 | 0.0129 | | 0.0121 | 39.0 | 1404 | 0.0134 | | 0.0121 | 40.0 | 1440 | 0.0128 | | 0.0119 | 41.0 | 1476 | 0.0126 | | 0.0116 | 42.0 | 1512 | 0.0125 | | 0.0118 | 43.0 | 1548 | 0.0126 | | 0.0114 | 44.0 | 1584 | 0.0127 | | 0.0117 | 45.0 | 1620 | 0.0125 | | 0.0116 | 46.0 | 1656 | 0.0127 | | 0.0118 | 47.0 | 1692 | 0.0126 | | 0.0116 | 48.0 | 1728 | 0.0123 | | 0.0114 | 49.0 | 1764 | 0.0123 | | 0.0113 | 50.0 | 1800 | 0.0123 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3