--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: deberta-v3-large-finetuned-sst2 results: [] --- # deberta-v3-large-finetuned-sst2 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co./microsoft/deberta-v3-large) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.1258 - Accuracy: 0.9622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1173 | 1.0 | 4210 | 0.1258 | 0.9622 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1