--- base_model: slm-research-vn/Qwen2-7B-Instruct-SPPO-Function-call-v2.1 datasets: - slm-research-vn/dpo-format-function-calling-v2 - slm-research-vn/dpo-format-glaive-code-assistant-v3-with-mistral-large-slm-iter4 - argilla/dpo-mix-7k library_name: peft tags: - alignment-handbook - trl - dpo - generated_from_trainer model-index: - name: Qwen2-7B-Instruct-SPPO-Function-call-v2.4 results: [] --- # Qwen2-7B-Instruct-SPPO-Function-call-v2.4 This model is a fine-tuned version of [slm-research-vn/Qwen2-7B-Instruct-SPPO-Function-call-v2.1](https://huggingface.co./slm-research-vn/Qwen2-7B-Instruct-SPPO-Function-call-v2.1) on the slm-research-vn/dpo-format-function-calling-v2, the slm-research-vn/dpo-format-glaive-code-assistant-v3-with-mistral-large-slm-iter4 and the argilla/dpo-mix-7k datasets. It achieves the following results on the evaluation set: - Loss: 0.4345 - Rewards/chosen: 1.3033 - Rewards/rejected: 0.2776 - Rewards/accuracies: 0.8185 - Rewards/margins: 1.0258 - Logps/rejected: -333.5228 - Logps/chosen: -261.0424 - Logits/rejected: -0.7224 - Logits/chosen: -0.7089 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6782 | 0.1270 | 100 | 0.6611 | 0.1038 | 0.0272 | 0.8000 | 0.0766 | -338.5302 | -285.0340 | -0.7425 | -0.7284 | | 0.5811 | 0.2540 | 200 | 0.5409 | 0.5575 | 0.1395 | 0.8370 | 0.4180 | -336.2845 | -275.9589 | -0.7306 | -0.6945 | | 0.5484 | 0.3811 | 300 | 0.4777 | 0.9393 | 0.2286 | 0.8000 | 0.7107 | -334.5019 | -268.3231 | -0.7283 | -0.7031 | | 0.4531 | 0.5081 | 400 | 0.4535 | 1.1283 | 0.2592 | 0.8296 | 0.8690 | -333.8891 | -264.5439 | -0.7170 | -0.6879 | | 0.4577 | 0.6351 | 500 | 0.4415 | 1.2504 | 0.2849 | 0.8148 | 0.9655 | -333.3753 | -262.1006 | -0.7146 | -0.6865 | | 0.4715 | 0.7621 | 600 | 0.4364 | 1.2963 | 0.2864 | 0.8148 | 1.0099 | -333.3469 | -261.1842 | -0.7175 | -0.6913 | | 0.4508 | 0.8892 | 700 | 0.4348 | 1.2990 | 0.2819 | 0.8222 | 1.0172 | -333.4369 | -261.1283 | -0.7185 | -0.6937 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1