--- language: vi datasets: - vivos - common_voice - fpt - vlsp 100h metrics: - wer pipeline_tag: automatic-speech-recognition tags: - audio - speech - Transformer - wav2vec2 - automatic-speech-recognition - vietnamese license: cc-by-nc-4.0 widget: - example_title: common_voice_vi_30519758.mp3 src: https://huggingface.co./khanhld/wav2vec2-base-vietnamese-160h/raw/main/examples/common_voice_vi_30519758.mp3 - example_title: VIVOSDEV15_020.wav src: https://huggingface.co./khanhld/wav2vec2-base-vietnamese-160h/raw/main/examples/VIVOSDEV15_020.wav model-index: - name: Wav2vec2 Base Vietnamese 160h results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: vi metrics: - name: Test WER type: wer value: 10.78 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: VIVOS type: vivos args: vi metrics: - name: Test WER type: wer value: 15.05 --- # Vietnamese Speech Recognition using Wav2vec 2.0 ### Table of contents 1. [Model Description](#description) 2. [Benchmark Result](#benchmark) 3. [Example Usage](#example) 4. [Evaluation](#evaluation) 5. [Contact](#contact) ### Model Description Fine-tune the Wav2vec2-based model on about 160 hours of Vietnamese speech dataset from different resources including [VIOS](https://huggingface.co./datasets/vivos), [COMMON VOICE](https://huggingface.co./datasets/mozilla-foundation/common_voice_8_0), [FPT](https://data.mendeley.com/datasets/k9sxg2twv4/4) and [VLSP 100h](https://drive.google.com/file/d/1vUSxdORDxk-ePUt-bUVDahpoXiqKchMx/view). We have not yet incorporated the Language Model (which will be included in future work) into our ASR system but still gained a promising result.
We also provide code for Pre-training and Fine-tuning the Wav2vec2 model (not available for now but will release soon). If you wish to train on your dataset, check it out here: 1. [Pretrain](https://github.com/khanld/ASR-Wav2vec-Pretrain) 2. [Finetune](https://github.com/khanld/ASR-Wa2vec-Finetune)
### Benchmark WER Result | | [VIVOS](https://huggingface.co./datasets/vivos) | [COMMON VOICE 8.0](https://huggingface.co./datasets/mozilla-foundation/common_voice_8_0) | |---|---|---| |without LM| 15.05 | 10.78 | |with LM| in progress | in progress | ### Example Usage ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import librosa device = torch.device("cuda" if torch.cuda.is_available() else "cpu") processor = Wav2Vec2Processor.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h") model = Wav2Vec2ForCTC.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h") model.to(device) def transcribe(wav): input_values = processor(wav, sampling_rate=16000, return_tensors="pt").input_values logits = model(input_values.to(device)).logits pred_ids = torch.argmax(logits, dim=-1) pred_transcript = processor.batch_decode(pred_ids)[0] return pred_transcript wav, _ = librosa.load('path/to/your/audio/file', sr = 16000) print(f"transcript: {transcribe(wav)}") ``` ### Evaluation ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torch import re from datasets import load_dataset, load_metric, Audio wer = load_metric("wer") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # load processor and model processor = Wav2Vec2Processor.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h") model = Wav2Vec2ForCTC.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h") model.to(device) model.eval() # Load dataset test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "vi", split="test") test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16000)) chars_to_ignore = r'[,?.!\-;:"“%\'�]' # ignore special characters # preprocess data def preprocess(batch): audio = batch["audio"] batch["input_values"] = audio["array"] batch["transcript"] = re.sub(chars_to_ignore, '', batch["sentence"]).lower() return batch # run inference def inference(batch): input_values = processor(batch["input_values"], sampling_rate=16000, return_tensors="pt").input_values logits = model(input_values.to(device)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_transcript"] = processor.batch_decode(pred_ids) return batch test_dataset = test_dataset.map(preprocess) result = test_dataset.map(inference, batched=True, batch_size=1) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_transcript"], references=result["transcript"]))) ``` **Test Result**: 10.78% ### Contact khanhld218@uef.edu.vn
[![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/)
[![LinkedIn](https://img.shields.io/badge/linkedin-%230077B5.svg?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/khanhld257/)