Divyasreepat
commited on
Commit
•
d140d35
1
Parent(s):
04cac80
Update README.md with new model card content
Browse files
README.md
CHANGED
@@ -39,7 +39,7 @@ The following model checkpoints are provided by the Keras team. Weights have bee
|
|
39 |
input_data = np.ones(shape=(8, 224, 224, 3))
|
40 |
|
41 |
# Pretrained backbone
|
42 |
-
model = keras_hub.models.DenseNetBackbone.from_preset("
|
43 |
model(input_data)
|
44 |
|
45 |
# Randomly initialized backbone with a custom config
|
@@ -49,7 +49,7 @@ model = keras_hub.models.DenseNetBackbone(
|
|
49 |
model(input_data)
|
50 |
|
51 |
# Use densenet for image classification task
|
52 |
-
model = keras_hub.models.ImageClassifier.from_preset("
|
53 |
|
54 |
# User Timm presets directly from HuggingFace
|
55 |
model = keras_hub.models.ImageClassifier.from_preset('hf://timm/densenet121.tv_in1k')
|
@@ -61,7 +61,7 @@ model = keras_hub.models.ImageClassifier.from_preset('hf://timm/densenet121.tv_i
|
|
61 |
input_data = np.ones(shape=(8, 224, 224, 3))
|
62 |
|
63 |
# Pretrained backbone
|
64 |
-
model = keras_hub.models.DenseNetBackbone.from_preset("
|
65 |
model(input_data)
|
66 |
|
67 |
# Randomly initialized backbone with a custom config
|
@@ -71,7 +71,7 @@ model = keras_hub.models.DenseNetBackbone(
|
|
71 |
model(input_data)
|
72 |
|
73 |
# Use densenet for image classification task
|
74 |
-
model = keras_hub.models.ImageClassifier.from_preset("
|
75 |
|
76 |
# User Timm presets directly from HuggingFace
|
77 |
model = keras_hub.models.ImageClassifier.from_preset('hf://timm/densenet121.tv_in1k')
|
|
|
39 |
input_data = np.ones(shape=(8, 224, 224, 3))
|
40 |
|
41 |
# Pretrained backbone
|
42 |
+
model = keras_hub.models.DenseNetBackbone.from_preset("densenet_201_imagenet")
|
43 |
model(input_data)
|
44 |
|
45 |
# Randomly initialized backbone with a custom config
|
|
|
49 |
model(input_data)
|
50 |
|
51 |
# Use densenet for image classification task
|
52 |
+
model = keras_hub.models.ImageClassifier.from_preset("densenet_201_imagenet")
|
53 |
|
54 |
# User Timm presets directly from HuggingFace
|
55 |
model = keras_hub.models.ImageClassifier.from_preset('hf://timm/densenet121.tv_in1k')
|
|
|
61 |
input_data = np.ones(shape=(8, 224, 224, 3))
|
62 |
|
63 |
# Pretrained backbone
|
64 |
+
model = keras_hub.models.DenseNetBackbone.from_preset("hf://keras/densenet_201_imagenet")
|
65 |
model(input_data)
|
66 |
|
67 |
# Randomly initialized backbone with a custom config
|
|
|
71 |
model(input_data)
|
72 |
|
73 |
# Use densenet for image classification task
|
74 |
+
model = keras_hub.models.ImageClassifier.from_preset("hf://keras/densenet_201_imagenet")
|
75 |
|
76 |
# User Timm presets directly from HuggingFace
|
77 |
model = keras_hub.models.ImageClassifier.from_preset('hf://timm/densenet121.tv_in1k')
|