Upload pipeline.py
Browse files- pipeline.py +78 -0
pipeline.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from typing import Any, Dict, List
|
3 |
+
|
4 |
+
import tensorflow as tf
|
5 |
+
from tensorflow import keras
|
6 |
+
from app.pipelines import Pipeline
|
7 |
+
from huggingface_hub import from_pretrained_keras, hf_hub_download
|
8 |
+
from PIL import Image
|
9 |
+
import base64
|
10 |
+
|
11 |
+
|
12 |
+
MODEL_FILENAME = "saved_model.pb"
|
13 |
+
CONFIG_FILENAME = "config.json"
|
14 |
+
|
15 |
+
|
16 |
+
class PreTrainedPipeline(Pipeline):
|
17 |
+
def __init__(self, model_id: str):
|
18 |
+
|
19 |
+
|
20 |
+
# Reload Keras SavedModel
|
21 |
+
self.model = from_pretrained_keras(model_id)
|
22 |
+
|
23 |
+
# Number of labels
|
24 |
+
self.num_labels = self.model.output_shape[1]
|
25 |
+
|
26 |
+
# Config is required to know the mapping to label.
|
27 |
+
config_file = hf_hub_download(model_id, filename=CONFIG_FILENAME)
|
28 |
+
with open(config_file) as config:
|
29 |
+
config = json.load(config)
|
30 |
+
|
31 |
+
self.id2label = config.get(
|
32 |
+
"id2label", {str(i): f"LABEL_{i}" for i in range(self.num_labels)}
|
33 |
+
)
|
34 |
+
|
35 |
+
def __call__(self, inputs: "Image.Image") -> List[Dict[str, Any]]:
|
36 |
+
"""
|
37 |
+
Args:
|
38 |
+
inputs (:obj:`PIL.Image`):
|
39 |
+
The raw image representation as PIL.
|
40 |
+
No transformation made whatsoever from the input. Make all necessary transformations here.
|
41 |
+
Return:
|
42 |
+
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX" (str), mask: "base64 encoding of the mask" (str), "score": float}
|
43 |
+
It is preferred if the returned list is in decreasing `score` order
|
44 |
+
"""
|
45 |
+
# Resize image to expected size
|
46 |
+
|
47 |
+
expected_input_size = self.model.input_shape
|
48 |
+
if expected_input_size[-1] == 1:
|
49 |
+
inputs = inputs.convert("L")
|
50 |
+
|
51 |
+
target_size = (expected_input_size[1], expected_input_size[2])
|
52 |
+
img = tf.image.resize(inputs, target_size)
|
53 |
+
|
54 |
+
img_array = tf.keras.preprocessing.image.img_to_array(img)
|
55 |
+
img_array = img_array[tf.newaxis, ...]
|
56 |
+
|
57 |
+
predictions = self.model.predict(img_array, axis=-1)
|
58 |
+
|
59 |
+
self.single_output_unit = (
|
60 |
+
self.model.output_shape[1] == 1
|
61 |
+
) # if there are two classes
|
62 |
+
|
63 |
+
if self.single_output_unit:
|
64 |
+
score = predictions[0][0]
|
65 |
+
labels = [
|
66 |
+
{"label": str(self.id2label["1"]), "score": float(score)},
|
67 |
+
{"label": str(self.id2label["0"]), "score": float(1 - score)},
|
68 |
+
]
|
69 |
+
else:
|
70 |
+
labels = [
|
71 |
+
{
|
72 |
+
"label": str(self.id2label[str(i)]),
|
73 |
+
"mask": base64.b64encode(predictions[0][i]),
|
74 |
+
"score": float(score),
|
75 |
+
}
|
76 |
+
for i, score in enumerate(predictions[0])
|
77 |
+
]
|
78 |
+
return sorted(labels, key=lambda tup: tup["score"], reverse=True)[: self.top_k]
|