anuragshas
commited on
Commit
·
33e32b0
1
Parent(s):
69c5bbb
Upload lstm_seq2seq.ipynb
Browse files- lstm_seq2seq.ipynb +1775 -0
lstm_seq2seq.ipynb
ADDED
@@ -0,0 +1,1775 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "pUWCd_Ch5J49"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"# Character-level recurrent sequence-to-sequence model\n",
|
10 |
+
"\n",
|
11 |
+
"**Author:** [fchollet](https://twitter.com/fchollet)<br>\n",
|
12 |
+
"**Date created:** 2017/09/29<br>\n",
|
13 |
+
"**Last modified:** 2020/04/26<br>\n",
|
14 |
+
"**Description:** Character-level recurrent sequence-to-sequence model."
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "markdown",
|
19 |
+
"metadata": {
|
20 |
+
"id": "y2uZhuQ-5J5B"
|
21 |
+
},
|
22 |
+
"source": [
|
23 |
+
"## Introduction\n",
|
24 |
+
"\n",
|
25 |
+
"This example demonstrates how to implement a basic character-level\n",
|
26 |
+
"recurrent sequence-to-sequence model. We apply it to translating\n",
|
27 |
+
"short English sentences into short French sentences,\n",
|
28 |
+
"character-by-character. Note that it is fairly unusual to\n",
|
29 |
+
"do character-level machine translation, as word-level\n",
|
30 |
+
"models are more common in this domain.\n",
|
31 |
+
"\n",
|
32 |
+
"**Summary of the algorithm**\n",
|
33 |
+
"\n",
|
34 |
+
"- We start with input sequences from a domain (e.g. English sentences)\n",
|
35 |
+
" and corresponding target sequences from another domain\n",
|
36 |
+
" (e.g. French sentences).\n",
|
37 |
+
"- An encoder LSTM turns input sequences to 2 state vectors\n",
|
38 |
+
" (we keep the last LSTM state and discard the outputs).\n",
|
39 |
+
"- A decoder LSTM is trained to turn the target sequences into\n",
|
40 |
+
" the same sequence but offset by one timestep in the future,\n",
|
41 |
+
" a training process called \"teacher forcing\" in this context.\n",
|
42 |
+
" It uses as initial state the state vectors from the encoder.\n",
|
43 |
+
" Effectively, the decoder learns to generate `targets[t+1...]`\n",
|
44 |
+
" given `targets[...t]`, conditioned on the input sequence.\n",
|
45 |
+
"- In inference mode, when we want to decode unknown input sequences, we:\n",
|
46 |
+
" - Encode the input sequence into state vectors\n",
|
47 |
+
" - Start with a target sequence of size 1\n",
|
48 |
+
" (just the start-of-sequence character)\n",
|
49 |
+
" - Feed the state vectors and 1-char target sequence\n",
|
50 |
+
" to the decoder to produce predictions for the next character\n",
|
51 |
+
" - Sample the next character using these predictions\n",
|
52 |
+
" (we simply use argmax).\n",
|
53 |
+
" - Append the sampled character to the target sequence\n",
|
54 |
+
" - Repeat until we generate the end-of-sequence character or we\n",
|
55 |
+
" hit the character limit.\n"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "markdown",
|
60 |
+
"metadata": {
|
61 |
+
"id": "ymvVW7f55J5C"
|
62 |
+
},
|
63 |
+
"source": [
|
64 |
+
"## Setup\n"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"execution_count": 1,
|
70 |
+
"metadata": {
|
71 |
+
"id": "IKzDuATV5J5C"
|
72 |
+
},
|
73 |
+
"outputs": [],
|
74 |
+
"source": [
|
75 |
+
"import numpy as np\n",
|
76 |
+
"import tensorflow as tf\n",
|
77 |
+
"from tensorflow import keras\n"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"cell_type": "markdown",
|
82 |
+
"metadata": {
|
83 |
+
"id": "KsdDP8835J5D"
|
84 |
+
},
|
85 |
+
"source": [
|
86 |
+
"## Download the data\n"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "code",
|
91 |
+
"execution_count": 2,
|
92 |
+
"metadata": {
|
93 |
+
"id": "QjrXitpv5J5E",
|
94 |
+
"colab": {
|
95 |
+
"base_uri": "https://localhost:8080/"
|
96 |
+
},
|
97 |
+
"outputId": "a5c71e87-b3c7-419e-d987-5f2551c0e236"
|
98 |
+
},
|
99 |
+
"outputs": [
|
100 |
+
{
|
101 |
+
"output_type": "execute_result",
|
102 |
+
"data": {
|
103 |
+
"text/plain": [
|
104 |
+
"['Archive: fra-eng.zip',\n",
|
105 |
+
" ' inflating: _about.txt ',\n",
|
106 |
+
" ' inflating: fra.txt ']"
|
107 |
+
]
|
108 |
+
},
|
109 |
+
"metadata": {},
|
110 |
+
"execution_count": 2
|
111 |
+
}
|
112 |
+
],
|
113 |
+
"source": [
|
114 |
+
"!!curl -O http://www.manythings.org/anki/fra-eng.zip\n",
|
115 |
+
"!!unzip fra-eng.zip\n"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "markdown",
|
120 |
+
"metadata": {
|
121 |
+
"id": "4Qi0m1NC5J5E"
|
122 |
+
},
|
123 |
+
"source": [
|
124 |
+
"## Configuration\n"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"cell_type": "code",
|
129 |
+
"execution_count": 3,
|
130 |
+
"metadata": {
|
131 |
+
"id": "UB6qEq0b5J5F"
|
132 |
+
},
|
133 |
+
"outputs": [],
|
134 |
+
"source": [
|
135 |
+
"batch_size = 64 # Batch size for training.\n",
|
136 |
+
"epochs = 100 # Number of epochs to train for.\n",
|
137 |
+
"latent_dim = 256 # Latent dimensionality of the encoding space.\n",
|
138 |
+
"num_samples = 10000 # Number of samples to train on.\n",
|
139 |
+
"# Path to the data txt file on disk.\n",
|
140 |
+
"data_path = \"fra.txt\"\n"
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"cell_type": "markdown",
|
145 |
+
"metadata": {
|
146 |
+
"id": "50hqcmjH5J5F"
|
147 |
+
},
|
148 |
+
"source": [
|
149 |
+
"## Prepare the data\n"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"cell_type": "code",
|
154 |
+
"execution_count": 4,
|
155 |
+
"metadata": {
|
156 |
+
"id": "XIoa7eHS5J5G",
|
157 |
+
"colab": {
|
158 |
+
"base_uri": "https://localhost:8080/"
|
159 |
+
},
|
160 |
+
"outputId": "583ed656-723a-4c36-eede-259afa77ffba"
|
161 |
+
},
|
162 |
+
"outputs": [
|
163 |
+
{
|
164 |
+
"output_type": "stream",
|
165 |
+
"name": "stdout",
|
166 |
+
"text": [
|
167 |
+
"Number of samples: 10000\n",
|
168 |
+
"Number of unique input tokens: 71\n",
|
169 |
+
"Number of unique output tokens: 92\n",
|
170 |
+
"Max sequence length for inputs: 15\n",
|
171 |
+
"Max sequence length for outputs: 59\n"
|
172 |
+
]
|
173 |
+
}
|
174 |
+
],
|
175 |
+
"source": [
|
176 |
+
"# Vectorize the data.\n",
|
177 |
+
"input_texts = []\n",
|
178 |
+
"target_texts = []\n",
|
179 |
+
"input_characters = set()\n",
|
180 |
+
"target_characters = set()\n",
|
181 |
+
"with open(data_path, \"r\", encoding=\"utf-8\") as f:\n",
|
182 |
+
" lines = f.read().split(\"\\n\")\n",
|
183 |
+
"for line in lines[: min(num_samples, len(lines) - 1)]:\n",
|
184 |
+
" input_text, target_text, _ = line.split(\"\\t\")\n",
|
185 |
+
" # We use \"tab\" as the \"start sequence\" character\n",
|
186 |
+
" # for the targets, and \"\\n\" as \"end sequence\" character.\n",
|
187 |
+
" target_text = \"\\t\" + target_text + \"\\n\"\n",
|
188 |
+
" input_texts.append(input_text)\n",
|
189 |
+
" target_texts.append(target_text)\n",
|
190 |
+
" for char in input_text:\n",
|
191 |
+
" if char not in input_characters:\n",
|
192 |
+
" input_characters.add(char)\n",
|
193 |
+
" for char in target_text:\n",
|
194 |
+
" if char not in target_characters:\n",
|
195 |
+
" target_characters.add(char)\n",
|
196 |
+
"\n",
|
197 |
+
"input_characters = sorted(list(input_characters))\n",
|
198 |
+
"target_characters = sorted(list(target_characters))\n",
|
199 |
+
"num_encoder_tokens = len(input_characters)\n",
|
200 |
+
"num_decoder_tokens = len(target_characters)\n",
|
201 |
+
"max_encoder_seq_length = max([len(txt) for txt in input_texts])\n",
|
202 |
+
"max_decoder_seq_length = max([len(txt) for txt in target_texts])\n",
|
203 |
+
"\n",
|
204 |
+
"print(\"Number of samples:\", len(input_texts))\n",
|
205 |
+
"print(\"Number of unique input tokens:\", num_encoder_tokens)\n",
|
206 |
+
"print(\"Number of unique output tokens:\", num_decoder_tokens)\n",
|
207 |
+
"print(\"Max sequence length for inputs:\", max_encoder_seq_length)\n",
|
208 |
+
"print(\"Max sequence length for outputs:\", max_decoder_seq_length)\n",
|
209 |
+
"\n",
|
210 |
+
"input_token_index = dict([(char, i) for i, char in enumerate(input_characters)])\n",
|
211 |
+
"target_token_index = dict([(char, i) for i, char in enumerate(target_characters)])\n",
|
212 |
+
"\n",
|
213 |
+
"encoder_input_data = np.zeros(\n",
|
214 |
+
" (len(input_texts), max_encoder_seq_length, num_encoder_tokens), dtype=\"float32\"\n",
|
215 |
+
")\n",
|
216 |
+
"decoder_input_data = np.zeros(\n",
|
217 |
+
" (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype=\"float32\"\n",
|
218 |
+
")\n",
|
219 |
+
"decoder_target_data = np.zeros(\n",
|
220 |
+
" (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype=\"float32\"\n",
|
221 |
+
")\n",
|
222 |
+
"\n",
|
223 |
+
"for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):\n",
|
224 |
+
" for t, char in enumerate(input_text):\n",
|
225 |
+
" encoder_input_data[i, t, input_token_index[char]] = 1.0\n",
|
226 |
+
" encoder_input_data[i, t + 1 :, input_token_index[\" \"]] = 1.0\n",
|
227 |
+
" for t, char in enumerate(target_text):\n",
|
228 |
+
" # decoder_target_data is ahead of decoder_input_data by one timestep\n",
|
229 |
+
" decoder_input_data[i, t, target_token_index[char]] = 1.0\n",
|
230 |
+
" if t > 0:\n",
|
231 |
+
" # decoder_target_data will be ahead by one timestep\n",
|
232 |
+
" # and will not include the start character.\n",
|
233 |
+
" decoder_target_data[i, t - 1, target_token_index[char]] = 1.0\n",
|
234 |
+
" decoder_input_data[i, t + 1 :, target_token_index[\" \"]] = 1.0\n",
|
235 |
+
" decoder_target_data[i, t:, target_token_index[\" \"]] = 1.0\n"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "markdown",
|
240 |
+
"metadata": {
|
241 |
+
"id": "Nmmia38F5J5H"
|
242 |
+
},
|
243 |
+
"source": [
|
244 |
+
"## Build the model\n"
|
245 |
+
]
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"cell_type": "code",
|
249 |
+
"execution_count": 5,
|
250 |
+
"metadata": {
|
251 |
+
"id": "xUBfSVSH5J5H"
|
252 |
+
},
|
253 |
+
"outputs": [],
|
254 |
+
"source": [
|
255 |
+
"# Define an input sequence and process it.\n",
|
256 |
+
"encoder_inputs = keras.Input(shape=(None, num_encoder_tokens))\n",
|
257 |
+
"encoder = keras.layers.LSTM(latent_dim, return_state=True)\n",
|
258 |
+
"encoder_outputs, state_h, state_c = encoder(encoder_inputs)\n",
|
259 |
+
"\n",
|
260 |
+
"# We discard `encoder_outputs` and only keep the states.\n",
|
261 |
+
"encoder_states = [state_h, state_c]\n",
|
262 |
+
"\n",
|
263 |
+
"# Set up the decoder, using `encoder_states` as initial state.\n",
|
264 |
+
"decoder_inputs = keras.Input(shape=(None, num_decoder_tokens))\n",
|
265 |
+
"\n",
|
266 |
+
"# We set up our decoder to return full output sequences,\n",
|
267 |
+
"# and to return internal states as well. We don't use the\n",
|
268 |
+
"# return states in the training model, but we will use them in inference.\n",
|
269 |
+
"decoder_lstm = keras.layers.LSTM(latent_dim, return_sequences=True, return_state=True)\n",
|
270 |
+
"decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)\n",
|
271 |
+
"decoder_dense = keras.layers.Dense(num_decoder_tokens, activation=\"softmax\")\n",
|
272 |
+
"decoder_outputs = decoder_dense(decoder_outputs)\n",
|
273 |
+
"\n",
|
274 |
+
"# Define the model that will turn\n",
|
275 |
+
"# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`\n",
|
276 |
+
"model = keras.Model([encoder_inputs, decoder_inputs], decoder_outputs)\n"
|
277 |
+
]
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"cell_type": "markdown",
|
281 |
+
"metadata": {
|
282 |
+
"id": "MYvCCy4i5J5I"
|
283 |
+
},
|
284 |
+
"source": [
|
285 |
+
"## Train the model\n"
|
286 |
+
]
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"cell_type": "code",
|
290 |
+
"execution_count": 6,
|
291 |
+
"metadata": {
|
292 |
+
"id": "3kgt3bnl5J5I",
|
293 |
+
"colab": {
|
294 |
+
"base_uri": "https://localhost:8080/"
|
295 |
+
},
|
296 |
+
"outputId": "f347151f-3666-4f10-8a05-6949a2361301"
|
297 |
+
},
|
298 |
+
"outputs": [
|
299 |
+
{
|
300 |
+
"output_type": "stream",
|
301 |
+
"name": "stdout",
|
302 |
+
"text": [
|
303 |
+
"Epoch 1/100\n",
|
304 |
+
"125/125 [==============================] - 8s 19ms/step - loss: 1.1334 - accuracy: 0.7368 - val_loss: 1.0400 - val_accuracy: 0.7264\n",
|
305 |
+
"Epoch 2/100\n",
|
306 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.8081 - accuracy: 0.7805 - val_loss: 0.8330 - val_accuracy: 0.7693\n",
|
307 |
+
"Epoch 3/100\n",
|
308 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.6407 - accuracy: 0.8185 - val_loss: 0.6837 - val_accuracy: 0.8008\n",
|
309 |
+
"Epoch 4/100\n",
|
310 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.5614 - accuracy: 0.8366 - val_loss: 0.6254 - val_accuracy: 0.8138\n",
|
311 |
+
"Epoch 5/100\n",
|
312 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.5160 - accuracy: 0.8490 - val_loss: 0.5773 - val_accuracy: 0.8346\n",
|
313 |
+
"Epoch 6/100\n",
|
314 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.4815 - accuracy: 0.8589 - val_loss: 0.5527 - val_accuracy: 0.8383\n",
|
315 |
+
"Epoch 7/100\n",
|
316 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.4538 - accuracy: 0.8659 - val_loss: 0.5317 - val_accuracy: 0.8430\n",
|
317 |
+
"Epoch 8/100\n",
|
318 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.4314 - accuracy: 0.8716 - val_loss: 0.5120 - val_accuracy: 0.8484\n",
|
319 |
+
"Epoch 9/100\n",
|
320 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.4118 - accuracy: 0.8768 - val_loss: 0.5096 - val_accuracy: 0.8493\n",
|
321 |
+
"Epoch 10/100\n",
|
322 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.3945 - accuracy: 0.8818 - val_loss: 0.4892 - val_accuracy: 0.8545\n",
|
323 |
+
"Epoch 11/100\n",
|
324 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.3785 - accuracy: 0.8864 - val_loss: 0.4884 - val_accuracy: 0.8550\n",
|
325 |
+
"Epoch 12/100\n",
|
326 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.3637 - accuracy: 0.8905 - val_loss: 0.4725 - val_accuracy: 0.8597\n",
|
327 |
+
"Epoch 13/100\n",
|
328 |
+
"125/125 [==============================] - 2s 14ms/step - loss: 0.3498 - accuracy: 0.8946 - val_loss: 0.4674 - val_accuracy: 0.8624\n",
|
329 |
+
"Epoch 14/100\n",
|
330 |
+
"125/125 [==============================] - 2s 15ms/step - loss: 0.3370 - accuracy: 0.8981 - val_loss: 0.4597 - val_accuracy: 0.8644\n",
|
331 |
+
"Epoch 15/100\n",
|
332 |
+
"125/125 [==============================] - 2s 14ms/step - loss: 0.3244 - accuracy: 0.9020 - val_loss: 0.4533 - val_accuracy: 0.8661\n",
|
333 |
+
"Epoch 16/100\n",
|
334 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.3124 - accuracy: 0.9056 - val_loss: 0.4569 - val_accuracy: 0.8655\n",
|
335 |
+
"Epoch 17/100\n",
|
336 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.3012 - accuracy: 0.9088 - val_loss: 0.4515 - val_accuracy: 0.8688\n",
|
337 |
+
"Epoch 18/100\n",
|
338 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.2904 - accuracy: 0.9118 - val_loss: 0.4440 - val_accuracy: 0.8704\n",
|
339 |
+
"Epoch 19/100\n",
|
340 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.2803 - accuracy: 0.9154 - val_loss: 0.4473 - val_accuracy: 0.8697\n",
|
341 |
+
"Epoch 20/100\n",
|
342 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.2703 - accuracy: 0.9179 - val_loss: 0.4470 - val_accuracy: 0.8709\n",
|
343 |
+
"Epoch 21/100\n",
|
344 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.2611 - accuracy: 0.9212 - val_loss: 0.4447 - val_accuracy: 0.8725\n",
|
345 |
+
"Epoch 22/100\n",
|
346 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.2519 - accuracy: 0.9235 - val_loss: 0.4457 - val_accuracy: 0.8721\n",
|
347 |
+
"Epoch 23/100\n",
|
348 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.2436 - accuracy: 0.9262 - val_loss: 0.4503 - val_accuracy: 0.8723\n",
|
349 |
+
"Epoch 24/100\n",
|
350 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.2356 - accuracy: 0.9283 - val_loss: 0.4506 - val_accuracy: 0.8732\n",
|
351 |
+
"Epoch 25/100\n",
|
352 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.2275 - accuracy: 0.9309 - val_loss: 0.4531 - val_accuracy: 0.8733\n",
|
353 |
+
"Epoch 26/100\n",
|
354 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.2201 - accuracy: 0.9328 - val_loss: 0.4524 - val_accuracy: 0.8749\n",
|
355 |
+
"Epoch 27/100\n",
|
356 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.2132 - accuracy: 0.9353 - val_loss: 0.4615 - val_accuracy: 0.8736\n",
|
357 |
+
"Epoch 28/100\n",
|
358 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.2064 - accuracy: 0.9370 - val_loss: 0.4609 - val_accuracy: 0.8740\n",
|
359 |
+
"Epoch 29/100\n",
|
360 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1999 - accuracy: 0.9390 - val_loss: 0.4612 - val_accuracy: 0.8750\n",
|
361 |
+
"Epoch 30/100\n",
|
362 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1933 - accuracy: 0.9411 - val_loss: 0.4701 - val_accuracy: 0.8734\n",
|
363 |
+
"Epoch 31/100\n",
|
364 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1877 - accuracy: 0.9427 - val_loss: 0.4718 - val_accuracy: 0.8747\n",
|
365 |
+
"Epoch 32/100\n",
|
366 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1816 - accuracy: 0.9443 - val_loss: 0.4749 - val_accuracy: 0.8747\n",
|
367 |
+
"Epoch 33/100\n",
|
368 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1763 - accuracy: 0.9462 - val_loss: 0.4805 - val_accuracy: 0.8746\n",
|
369 |
+
"Epoch 34/100\n",
|
370 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1711 - accuracy: 0.9477 - val_loss: 0.4855 - val_accuracy: 0.8742\n",
|
371 |
+
"Epoch 35/100\n",
|
372 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1661 - accuracy: 0.9494 - val_loss: 0.4849 - val_accuracy: 0.8745\n",
|
373 |
+
"Epoch 36/100\n",
|
374 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1612 - accuracy: 0.9505 - val_loss: 0.4939 - val_accuracy: 0.8739\n",
|
375 |
+
"Epoch 37/100\n",
|
376 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1566 - accuracy: 0.9518 - val_loss: 0.5005 - val_accuracy: 0.8734\n",
|
377 |
+
"Epoch 38/100\n",
|
378 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1517 - accuracy: 0.9536 - val_loss: 0.5021 - val_accuracy: 0.8748\n",
|
379 |
+
"Epoch 39/100\n",
|
380 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1476 - accuracy: 0.9548 - val_loss: 0.5051 - val_accuracy: 0.8744\n",
|
381 |
+
"Epoch 40/100\n",
|
382 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1434 - accuracy: 0.9561 - val_loss: 0.5081 - val_accuracy: 0.8740\n",
|
383 |
+
"Epoch 41/100\n",
|
384 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1396 - accuracy: 0.9573 - val_loss: 0.5173 - val_accuracy: 0.8745\n",
|
385 |
+
"Epoch 42/100\n",
|
386 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1356 - accuracy: 0.9584 - val_loss: 0.5199 - val_accuracy: 0.8745\n",
|
387 |
+
"Epoch 43/100\n",
|
388 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1318 - accuracy: 0.9591 - val_loss: 0.5236 - val_accuracy: 0.8738\n",
|
389 |
+
"Epoch 44/100\n",
|
390 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1290 - accuracy: 0.9602 - val_loss: 0.5382 - val_accuracy: 0.8731\n",
|
391 |
+
"Epoch 45/100\n",
|
392 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1250 - accuracy: 0.9616 - val_loss: 0.5393 - val_accuracy: 0.8736\n",
|
393 |
+
"Epoch 46/100\n",
|
394 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1218 - accuracy: 0.9624 - val_loss: 0.5392 - val_accuracy: 0.8734\n",
|
395 |
+
"Epoch 47/100\n",
|
396 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1189 - accuracy: 0.9633 - val_loss: 0.5483 - val_accuracy: 0.8742\n",
|
397 |
+
"Epoch 48/100\n",
|
398 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1159 - accuracy: 0.9642 - val_loss: 0.5486 - val_accuracy: 0.8740\n",
|
399 |
+
"Epoch 49/100\n",
|
400 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1127 - accuracy: 0.9652 - val_loss: 0.5606 - val_accuracy: 0.8734\n",
|
401 |
+
"Epoch 50/100\n",
|
402 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1104 - accuracy: 0.9654 - val_loss: 0.5610 - val_accuracy: 0.8738\n",
|
403 |
+
"Epoch 51/100\n",
|
404 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1075 - accuracy: 0.9664 - val_loss: 0.5674 - val_accuracy: 0.8735\n",
|
405 |
+
"Epoch 52/100\n",
|
406 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1050 - accuracy: 0.9673 - val_loss: 0.5702 - val_accuracy: 0.8731\n",
|
407 |
+
"Epoch 53/100\n",
|
408 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1027 - accuracy: 0.9679 - val_loss: 0.5756 - val_accuracy: 0.8732\n",
|
409 |
+
"Epoch 54/100\n",
|
410 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.1004 - accuracy: 0.9684 - val_loss: 0.5783 - val_accuracy: 0.8736\n",
|
411 |
+
"Epoch 55/100\n",
|
412 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0978 - accuracy: 0.9691 - val_loss: 0.5838 - val_accuracy: 0.8729\n",
|
413 |
+
"Epoch 56/100\n",
|
414 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0955 - accuracy: 0.9700 - val_loss: 0.5851 - val_accuracy: 0.8736\n",
|
415 |
+
"Epoch 57/100\n",
|
416 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0934 - accuracy: 0.9703 - val_loss: 0.5969 - val_accuracy: 0.8722\n",
|
417 |
+
"Epoch 58/100\n",
|
418 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0913 - accuracy: 0.9709 - val_loss: 0.6024 - val_accuracy: 0.8723\n",
|
419 |
+
"Epoch 59/100\n",
|
420 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0890 - accuracy: 0.9717 - val_loss: 0.6073 - val_accuracy: 0.8723\n",
|
421 |
+
"Epoch 60/100\n",
|
422 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0873 - accuracy: 0.9720 - val_loss: 0.6113 - val_accuracy: 0.8731\n",
|
423 |
+
"Epoch 61/100\n",
|
424 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0858 - accuracy: 0.9725 - val_loss: 0.6190 - val_accuracy: 0.8726\n",
|
425 |
+
"Epoch 62/100\n",
|
426 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0836 - accuracy: 0.9732 - val_loss: 0.6139 - val_accuracy: 0.8731\n",
|
427 |
+
"Epoch 63/100\n",
|
428 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0819 - accuracy: 0.9737 - val_loss: 0.6242 - val_accuracy: 0.8725\n",
|
429 |
+
"Epoch 64/100\n",
|
430 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0803 - accuracy: 0.9740 - val_loss: 0.6318 - val_accuracy: 0.8709\n",
|
431 |
+
"Epoch 65/100\n",
|
432 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0784 - accuracy: 0.9748 - val_loss: 0.6384 - val_accuracy: 0.8728\n",
|
433 |
+
"Epoch 66/100\n",
|
434 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0768 - accuracy: 0.9749 - val_loss: 0.6392 - val_accuracy: 0.8721\n",
|
435 |
+
"Epoch 67/100\n",
|
436 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0755 - accuracy: 0.9754 - val_loss: 0.6453 - val_accuracy: 0.8718\n",
|
437 |
+
"Epoch 68/100\n",
|
438 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0741 - accuracy: 0.9758 - val_loss: 0.6492 - val_accuracy: 0.8716\n",
|
439 |
+
"Epoch 69/100\n",
|
440 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0720 - accuracy: 0.9765 - val_loss: 0.6505 - val_accuracy: 0.8720\n",
|
441 |
+
"Epoch 70/100\n",
|
442 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0711 - accuracy: 0.9768 - val_loss: 0.6605 - val_accuracy: 0.8720\n",
|
443 |
+
"Epoch 71/100\n",
|
444 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0698 - accuracy: 0.9771 - val_loss: 0.6621 - val_accuracy: 0.8714\n",
|
445 |
+
"Epoch 72/100\n",
|
446 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0685 - accuracy: 0.9774 - val_loss: 0.6656 - val_accuracy: 0.8721\n",
|
447 |
+
"Epoch 73/100\n",
|
448 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0668 - accuracy: 0.9778 - val_loss: 0.6736 - val_accuracy: 0.8715\n",
|
449 |
+
"Epoch 74/100\n",
|
450 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0654 - accuracy: 0.9782 - val_loss: 0.6759 - val_accuracy: 0.8713\n",
|
451 |
+
"Epoch 75/100\n",
|
452 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0642 - accuracy: 0.9786 - val_loss: 0.6830 - val_accuracy: 0.8717\n",
|
453 |
+
"Epoch 76/100\n",
|
454 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0633 - accuracy: 0.9789 - val_loss: 0.6856 - val_accuracy: 0.8705\n",
|
455 |
+
"Epoch 77/100\n",
|
456 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0623 - accuracy: 0.9792 - val_loss: 0.6924 - val_accuracy: 0.8714\n",
|
457 |
+
"Epoch 78/100\n",
|
458 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0608 - accuracy: 0.9795 - val_loss: 0.6958 - val_accuracy: 0.8709\n",
|
459 |
+
"Epoch 79/100\n",
|
460 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0601 - accuracy: 0.9798 - val_loss: 0.7000 - val_accuracy: 0.8712\n",
|
461 |
+
"Epoch 80/100\n",
|
462 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0589 - accuracy: 0.9799 - val_loss: 0.6989 - val_accuracy: 0.8719\n",
|
463 |
+
"Epoch 81/100\n",
|
464 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0577 - accuracy: 0.9804 - val_loss: 0.7021 - val_accuracy: 0.8704\n",
|
465 |
+
"Epoch 82/100\n",
|
466 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0571 - accuracy: 0.9806 - val_loss: 0.7111 - val_accuracy: 0.8705\n",
|
467 |
+
"Epoch 83/100\n",
|
468 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0562 - accuracy: 0.9808 - val_loss: 0.7124 - val_accuracy: 0.8715\n",
|
469 |
+
"Epoch 84/100\n",
|
470 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0549 - accuracy: 0.9812 - val_loss: 0.7160 - val_accuracy: 0.8711\n",
|
471 |
+
"Epoch 85/100\n",
|
472 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0541 - accuracy: 0.9815 - val_loss: 0.7220 - val_accuracy: 0.8707\n",
|
473 |
+
"Epoch 86/100\n",
|
474 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0537 - accuracy: 0.9817 - val_loss: 0.7173 - val_accuracy: 0.8711\n",
|
475 |
+
"Epoch 87/100\n",
|
476 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0521 - accuracy: 0.9820 - val_loss: 0.7312 - val_accuracy: 0.8702\n",
|
477 |
+
"Epoch 88/100\n",
|
478 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0514 - accuracy: 0.9822 - val_loss: 0.7252 - val_accuracy: 0.8718\n",
|
479 |
+
"Epoch 89/100\n",
|
480 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0507 - accuracy: 0.9825 - val_loss: 0.7324 - val_accuracy: 0.8703\n",
|
481 |
+
"Epoch 90/100\n",
|
482 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0503 - accuracy: 0.9824 - val_loss: 0.7375 - val_accuracy: 0.8696\n",
|
483 |
+
"Epoch 91/100\n",
|
484 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0493 - accuracy: 0.9829 - val_loss: 0.7417 - val_accuracy: 0.8699\n",
|
485 |
+
"Epoch 92/100\n",
|
486 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0485 - accuracy: 0.9831 - val_loss: 0.7448 - val_accuracy: 0.8712\n",
|
487 |
+
"Epoch 93/100\n",
|
488 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0484 - accuracy: 0.9831 - val_loss: 0.7448 - val_accuracy: 0.8699\n",
|
489 |
+
"Epoch 94/100\n",
|
490 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0470 - accuracy: 0.9834 - val_loss: 0.7461 - val_accuracy: 0.8709\n",
|
491 |
+
"Epoch 95/100\n",
|
492 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0468 - accuracy: 0.9834 - val_loss: 0.7468 - val_accuracy: 0.8712\n",
|
493 |
+
"Epoch 96/100\n",
|
494 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0463 - accuracy: 0.9838 - val_loss: 0.7601 - val_accuracy: 0.8701\n",
|
495 |
+
"Epoch 97/100\n",
|
496 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0456 - accuracy: 0.9839 - val_loss: 0.7589 - val_accuracy: 0.8702\n",
|
497 |
+
"Epoch 98/100\n",
|
498 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0448 - accuracy: 0.9840 - val_loss: 0.7604 - val_accuracy: 0.8709\n",
|
499 |
+
"Epoch 99/100\n",
|
500 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0445 - accuracy: 0.9840 - val_loss: 0.7593 - val_accuracy: 0.8701\n",
|
501 |
+
"Epoch 100/100\n",
|
502 |
+
"125/125 [==============================] - 2s 13ms/step - loss: 0.0442 - accuracy: 0.9842 - val_loss: 0.7654 - val_accuracy: 0.8698\n"
|
503 |
+
]
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"output_type": "stream",
|
507 |
+
"name": "stderr",
|
508 |
+
"text": [
|
509 |
+
"WARNING:absl:Found untraced functions such as lstm_cell_layer_call_fn, lstm_cell_layer_call_and_return_conditional_losses, lstm_cell_1_layer_call_fn, lstm_cell_1_layer_call_and_return_conditional_losses, lstm_cell_layer_call_fn while saving (showing 5 of 10). These functions will not be directly callable after loading.\n"
|
510 |
+
]
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"output_type": "stream",
|
514 |
+
"name": "stdout",
|
515 |
+
"text": [
|
516 |
+
"INFO:tensorflow:Assets written to: s2s/assets\n"
|
517 |
+
]
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"output_type": "stream",
|
521 |
+
"name": "stderr",
|
522 |
+
"text": [
|
523 |
+
"INFO:tensorflow:Assets written to: s2s/assets\n",
|
524 |
+
"WARNING:absl:<keras.layers.recurrent.LSTMCell object at 0x7f4ff1317d10> has the same name 'LSTMCell' as a built-in Keras object. Consider renaming <class 'keras.layers.recurrent.LSTMCell'> to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n",
|
525 |
+
"WARNING:absl:<keras.layers.recurrent.LSTMCell object at 0x7f4fe0236410> has the same name 'LSTMCell' as a built-in Keras object. Consider renaming <class 'keras.layers.recurrent.LSTMCell'> to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n"
|
526 |
+
]
|
527 |
+
}
|
528 |
+
],
|
529 |
+
"source": [
|
530 |
+
"# early_stopping_patience = 10\n",
|
531 |
+
"\n",
|
532 |
+
"# # Add early stopping\n",
|
533 |
+
"# early_stopping = keras.callbacks.EarlyStopping(\n",
|
534 |
+
"# monitor=\"val_accuracy\", patience=early_stopping_patience, restore_best_weights=True\n",
|
535 |
+
"# )\n",
|
536 |
+
"\n",
|
537 |
+
"model.compile(\n",
|
538 |
+
" optimizer=\"rmsprop\", loss=\"categorical_crossentropy\", metrics=[\"accuracy\"]\n",
|
539 |
+
")\n",
|
540 |
+
"model.fit(\n",
|
541 |
+
" [encoder_input_data, decoder_input_data],\n",
|
542 |
+
" decoder_target_data,\n",
|
543 |
+
" batch_size=batch_size,\n",
|
544 |
+
" epochs=epochs,\n",
|
545 |
+
" validation_split=0.2,\n",
|
546 |
+
" # callbacks=[early_stopping]\n",
|
547 |
+
")\n",
|
548 |
+
"# Save model\n",
|
549 |
+
"model.save(\"s2s\")\n"
|
550 |
+
]
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"cell_type": "markdown",
|
554 |
+
"metadata": {
|
555 |
+
"id": "HxkS8_Pf5J5I"
|
556 |
+
},
|
557 |
+
"source": [
|
558 |
+
"## Run inference (sampling)\n",
|
559 |
+
"\n",
|
560 |
+
"1. encode input and retrieve initial decoder state\n",
|
561 |
+
"2. run one step of decoder with this initial state\n",
|
562 |
+
"and a \"start of sequence\" token as target.\n",
|
563 |
+
"Output will be the next target token.\n",
|
564 |
+
"3. Repeat with the current target token and current states\n"
|
565 |
+
]
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"cell_type": "code",
|
569 |
+
"execution_count": 7,
|
570 |
+
"metadata": {
|
571 |
+
"id": "-KKcZuAa5J5I"
|
572 |
+
},
|
573 |
+
"outputs": [],
|
574 |
+
"source": [
|
575 |
+
"# Define sampling models\n",
|
576 |
+
"# Restore the model and construct the encoder and decoder.\n",
|
577 |
+
"model = keras.models.load_model(\"s2s\")\n",
|
578 |
+
"\n",
|
579 |
+
"encoder_inputs = model.input[0] # input_1\n",
|
580 |
+
"encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output # lstm_1\n",
|
581 |
+
"encoder_states = [state_h_enc, state_c_enc]\n",
|
582 |
+
"encoder_model = keras.Model(encoder_inputs, encoder_states)\n",
|
583 |
+
"\n",
|
584 |
+
"decoder_inputs = model.input[1] # input_2\n",
|
585 |
+
"decoder_state_input_h = keras.Input(shape=(latent_dim,))\n",
|
586 |
+
"decoder_state_input_c = keras.Input(shape=(latent_dim,))\n",
|
587 |
+
"decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]\n",
|
588 |
+
"decoder_lstm = model.layers[3]\n",
|
589 |
+
"decoder_outputs, state_h_dec, state_c_dec = decoder_lstm(\n",
|
590 |
+
" decoder_inputs, initial_state=decoder_states_inputs\n",
|
591 |
+
")\n",
|
592 |
+
"decoder_states = [state_h_dec, state_c_dec]\n",
|
593 |
+
"decoder_dense = model.layers[4]\n",
|
594 |
+
"decoder_outputs = decoder_dense(decoder_outputs)\n",
|
595 |
+
"decoder_model = keras.Model(\n",
|
596 |
+
" [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states\n",
|
597 |
+
")\n",
|
598 |
+
"\n",
|
599 |
+
"# Reverse-lookup token index to decode sequences back to\n",
|
600 |
+
"# something readable.\n",
|
601 |
+
"reverse_input_char_index = dict((i, char) for char, i in input_token_index.items())\n",
|
602 |
+
"reverse_target_char_index = dict((i, char) for char, i in target_token_index.items())\n",
|
603 |
+
"\n",
|
604 |
+
"\n",
|
605 |
+
"def decode_sequence(input_seq):\n",
|
606 |
+
" # Encode the input as state vectors.\n",
|
607 |
+
" states_value = encoder_model.predict(input_seq)\n",
|
608 |
+
"\n",
|
609 |
+
" # Generate empty target sequence of length 1.\n",
|
610 |
+
" target_seq = np.zeros((1, 1, num_decoder_tokens))\n",
|
611 |
+
" # Populate the first character of target sequence with the start character.\n",
|
612 |
+
" target_seq[0, 0, target_token_index[\"\\t\"]] = 1.0\n",
|
613 |
+
"\n",
|
614 |
+
" # Sampling loop for a batch of sequences\n",
|
615 |
+
" # (to simplify, here we assume a batch of size 1).\n",
|
616 |
+
" stop_condition = False\n",
|
617 |
+
" decoded_sentence = \"\"\n",
|
618 |
+
" while not stop_condition:\n",
|
619 |
+
" output_tokens, h, c = decoder_model.predict([target_seq] + states_value)\n",
|
620 |
+
"\n",
|
621 |
+
" # Sample a token\n",
|
622 |
+
" sampled_token_index = np.argmax(output_tokens[0, -1, :])\n",
|
623 |
+
" sampled_char = reverse_target_char_index[sampled_token_index]\n",
|
624 |
+
" decoded_sentence += sampled_char\n",
|
625 |
+
"\n",
|
626 |
+
" # Exit condition: either hit max length\n",
|
627 |
+
" # or find stop character.\n",
|
628 |
+
" if sampled_char == \"\\n\" or len(decoded_sentence) > max_decoder_seq_length:\n",
|
629 |
+
" stop_condition = True\n",
|
630 |
+
"\n",
|
631 |
+
" # Update the target sequence (of length 1).\n",
|
632 |
+
" target_seq = np.zeros((1, 1, num_decoder_tokens))\n",
|
633 |
+
" target_seq[0, 0, sampled_token_index] = 1.0\n",
|
634 |
+
"\n",
|
635 |
+
" # Update states\n",
|
636 |
+
" states_value = [h, c]\n",
|
637 |
+
" return decoded_sentence\n",
|
638 |
+
"\n"
|
639 |
+
]
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"cell_type": "markdown",
|
643 |
+
"metadata": {
|
644 |
+
"id": "pLvBXjXg5J5J"
|
645 |
+
},
|
646 |
+
"source": [
|
647 |
+
"You can now generate decoded sentences as such:\n"
|
648 |
+
]
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"cell_type": "code",
|
652 |
+
"execution_count": 8,
|
653 |
+
"metadata": {
|
654 |
+
"id": "7fG4EDSX5J5J",
|
655 |
+
"colab": {
|
656 |
+
"base_uri": "https://localhost:8080/"
|
657 |
+
},
|
658 |
+
"outputId": "84f4486e-fc08-4269-fed2-48628b568240"
|
659 |
+
},
|
660 |
+
"outputs": [
|
661 |
+
{
|
662 |
+
"output_type": "stream",
|
663 |
+
"name": "stdout",
|
664 |
+
"text": [
|
665 |
+
"-\n",
|
666 |
+
"Input sentence: Go.\n",
|
667 |
+
"Decoded sentence: Bouge !\n",
|
668 |
+
"\n",
|
669 |
+
"-\n",
|
670 |
+
"Input sentence: Go.\n",
|
671 |
+
"Decoded sentence: Bouge !\n",
|
672 |
+
"\n",
|
673 |
+
"-\n",
|
674 |
+
"Input sentence: Go.\n",
|
675 |
+
"Decoded sentence: Bouge !\n",
|
676 |
+
"\n",
|
677 |
+
"-\n",
|
678 |
+
"Input sentence: Hi.\n",
|
679 |
+
"Decoded sentence: Salut.\n",
|
680 |
+
"\n",
|
681 |
+
"-\n",
|
682 |
+
"Input sentence: Hi.\n",
|
683 |
+
"Decoded sentence: Salut.\n",
|
684 |
+
"\n",
|
685 |
+
"-\n",
|
686 |
+
"Input sentence: Run!\n",
|
687 |
+
"Decoded sentence: Courez !\n",
|
688 |
+
"\n",
|
689 |
+
"-\n",
|
690 |
+
"Input sentence: Run!\n",
|
691 |
+
"Decoded sentence: Courez !\n",
|
692 |
+
"\n",
|
693 |
+
"-\n",
|
694 |
+
"Input sentence: Run!\n",
|
695 |
+
"Decoded sentence: Courez !\n",
|
696 |
+
"\n",
|
697 |
+
"-\n",
|
698 |
+
"Input sentence: Run!\n",
|
699 |
+
"Decoded sentence: Courez !\n",
|
700 |
+
"\n",
|
701 |
+
"-\n",
|
702 |
+
"Input sentence: Run!\n",
|
703 |
+
"Decoded sentence: Courez !\n",
|
704 |
+
"\n",
|
705 |
+
"-\n",
|
706 |
+
"Input sentence: Run!\n",
|
707 |
+
"Decoded sentence: Courez !\n",
|
708 |
+
"\n",
|
709 |
+
"-\n",
|
710 |
+
"Input sentence: Run!\n",
|
711 |
+
"Decoded sentence: Courez !\n",
|
712 |
+
"\n",
|
713 |
+
"-\n",
|
714 |
+
"Input sentence: Run!\n",
|
715 |
+
"Decoded sentence: Courez !\n",
|
716 |
+
"\n",
|
717 |
+
"-\n",
|
718 |
+
"Input sentence: Run.\n",
|
719 |
+
"Decoded sentence: Courez !\n",
|
720 |
+
"\n",
|
721 |
+
"-\n",
|
722 |
+
"Input sentence: Run.\n",
|
723 |
+
"Decoded sentence: Courez !\n",
|
724 |
+
"\n",
|
725 |
+
"-\n",
|
726 |
+
"Input sentence: Run.\n",
|
727 |
+
"Decoded sentence: Courez !\n",
|
728 |
+
"\n",
|
729 |
+
"-\n",
|
730 |
+
"Input sentence: Run.\n",
|
731 |
+
"Decoded sentence: Courez !\n",
|
732 |
+
"\n",
|
733 |
+
"-\n",
|
734 |
+
"Input sentence: Run.\n",
|
735 |
+
"Decoded sentence: Courez !\n",
|
736 |
+
"\n",
|
737 |
+
"-\n",
|
738 |
+
"Input sentence: Run.\n",
|
739 |
+
"Decoded sentence: Courez !\n",
|
740 |
+
"\n",
|
741 |
+
"-\n",
|
742 |
+
"Input sentence: Run.\n",
|
743 |
+
"Decoded sentence: Courez !\n",
|
744 |
+
"\n"
|
745 |
+
]
|
746 |
+
}
|
747 |
+
],
|
748 |
+
"source": [
|
749 |
+
"for seq_index in range(20):\n",
|
750 |
+
" # Take one sequence (part of the training set)\n",
|
751 |
+
" # for trying out decoding.\n",
|
752 |
+
" input_seq = encoder_input_data[seq_index : seq_index + 1]\n",
|
753 |
+
" decoded_sentence = decode_sequence(input_seq)\n",
|
754 |
+
" print(\"-\")\n",
|
755 |
+
" print(\"Input sentence:\", input_texts[seq_index])\n",
|
756 |
+
" print(\"Decoded sentence:\", decoded_sentence)\n"
|
757 |
+
]
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"cell_type": "code",
|
761 |
+
"source": [
|
762 |
+
"import json"
|
763 |
+
],
|
764 |
+
"metadata": {
|
765 |
+
"id": "bqV-cbvJA5hd"
|
766 |
+
},
|
767 |
+
"execution_count": 10,
|
768 |
+
"outputs": []
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"cell_type": "code",
|
772 |
+
"source": [
|
773 |
+
"with open(\"input_vocab.json\", \"w\", encoding='utf-8') as outfile:\n",
|
774 |
+
" json.dump(input_token_index, outfile, ensure_ascii=False)\n",
|
775 |
+
"with open(\"target_vocab.json\", \"w\", encoding='utf-8') as outfile:\n",
|
776 |
+
" json.dump(target_token_index, outfile, ensure_ascii=False)"
|
777 |
+
],
|
778 |
+
"metadata": {
|
779 |
+
"id": "jXPS4ycZ9A9o"
|
780 |
+
},
|
781 |
+
"execution_count": 13,
|
782 |
+
"outputs": []
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"cell_type": "code",
|
786 |
+
"source": [
|
787 |
+
"!pip install huggingface-hub\n",
|
788 |
+
"!sudo apt-get install git-lfs\n",
|
789 |
+
"!git-lfs install"
|
790 |
+
],
|
791 |
+
"metadata": {
|
792 |
+
"colab": {
|
793 |
+
"base_uri": "https://localhost:8080/"
|
794 |
+
},
|
795 |
+
"id": "MCQ_ND66BXn9",
|
796 |
+
"outputId": "f58a6d0d-2c4b-4fb6-f44e-43b8167a5ded"
|
797 |
+
},
|
798 |
+
"execution_count": 14,
|
799 |
+
"outputs": [
|
800 |
+
{
|
801 |
+
"output_type": "stream",
|
802 |
+
"name": "stdout",
|
803 |
+
"text": [
|
804 |
+
"Collecting huggingface-hub\n",
|
805 |
+
" Downloading huggingface_hub-0.4.0-py3-none-any.whl (67 kB)\n",
|
806 |
+
"\u001b[?25l\r\u001b[K |█████ | 10 kB 35.3 MB/s eta 0:00:01\r\u001b[K |█████████▉ | 20 kB 24.7 MB/s eta 0:00:01\r\u001b[K |██████████████▊ | 30 kB 18.8 MB/s eta 0:00:01\r\u001b[K |███████████████████▋ | 40 kB 16.2 MB/s eta 0:00:01\r\u001b[K |████████████████████████▌ | 51 kB 8.3 MB/s eta 0:00:01\r\u001b[K |█████████████████████████████▍ | 61 kB 9.6 MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 67 kB 4.1 MB/s \n",
|
807 |
+
"\u001b[?25hRequirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (2.23.0)\n",
|
808 |
+
"Requirement already satisfied: pyyaml in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (3.13)\n",
|
809 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (3.4.2)\n",
|
810 |
+
"Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (21.3)\n",
|
811 |
+
"Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (4.10.1)\n",
|
812 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (3.10.0.2)\n",
|
813 |
+
"Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (4.62.3)\n",
|
814 |
+
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging>=20.9->huggingface-hub) (3.0.7)\n",
|
815 |
+
"Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->huggingface-hub) (3.7.0)\n",
|
816 |
+
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->huggingface-hub) (2.10)\n",
|
817 |
+
"Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->huggingface-hub) (3.0.4)\n",
|
818 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->huggingface-hub) (2021.10.8)\n",
|
819 |
+
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->huggingface-hub) (1.24.3)\n",
|
820 |
+
"Installing collected packages: huggingface-hub\n",
|
821 |
+
"Successfully installed huggingface-hub-0.4.0\n",
|
822 |
+
"Reading package lists... Done\n",
|
823 |
+
"Building dependency tree \n",
|
824 |
+
"Reading state information... Done\n",
|
825 |
+
"The following packages were automatically installed and are no longer required:\n",
|
826 |
+
" cuda-command-line-tools-10-0 cuda-command-line-tools-10-1\n",
|
827 |
+
" cuda-command-line-tools-11-0 cuda-compiler-10-0 cuda-compiler-10-1\n",
|
828 |
+
" cuda-compiler-11-0 cuda-cuobjdump-10-0 cuda-cuobjdump-10-1\n",
|
829 |
+
" cuda-cuobjdump-11-0 cuda-cupti-10-0 cuda-cupti-10-1 cuda-cupti-11-0\n",
|
830 |
+
" cuda-cupti-dev-11-0 cuda-documentation-10-0 cuda-documentation-10-1\n",
|
831 |
+
" cuda-documentation-11-0 cuda-documentation-11-1 cuda-gdb-10-0 cuda-gdb-10-1\n",
|
832 |
+
" cuda-gdb-11-0 cuda-gpu-library-advisor-10-0 cuda-gpu-library-advisor-10-1\n",
|
833 |
+
" cuda-libraries-10-0 cuda-libraries-10-1 cuda-libraries-11-0\n",
|
834 |
+
" cuda-memcheck-10-0 cuda-memcheck-10-1 cuda-memcheck-11-0 cuda-nsight-10-0\n",
|
835 |
+
" cuda-nsight-10-1 cuda-nsight-11-0 cuda-nsight-11-1 cuda-nsight-compute-10-0\n",
|
836 |
+
" cuda-nsight-compute-10-1 cuda-nsight-compute-11-0 cuda-nsight-compute-11-1\n",
|
837 |
+
" cuda-nsight-systems-10-1 cuda-nsight-systems-11-0 cuda-nsight-systems-11-1\n",
|
838 |
+
" cuda-nvcc-10-0 cuda-nvcc-10-1 cuda-nvcc-11-0 cuda-nvdisasm-10-0\n",
|
839 |
+
" cuda-nvdisasm-10-1 cuda-nvdisasm-11-0 cuda-nvml-dev-10-0 cuda-nvml-dev-10-1\n",
|
840 |
+
" cuda-nvml-dev-11-0 cuda-nvprof-10-0 cuda-nvprof-10-1 cuda-nvprof-11-0\n",
|
841 |
+
" cuda-nvprune-10-0 cuda-nvprune-10-1 cuda-nvprune-11-0 cuda-nvtx-10-0\n",
|
842 |
+
" cuda-nvtx-10-1 cuda-nvtx-11-0 cuda-nvvp-10-0 cuda-nvvp-10-1 cuda-nvvp-11-0\n",
|
843 |
+
" cuda-nvvp-11-1 cuda-samples-10-0 cuda-samples-10-1 cuda-samples-11-0\n",
|
844 |
+
" cuda-samples-11-1 cuda-sanitizer-11-0 cuda-sanitizer-api-10-1\n",
|
845 |
+
" cuda-toolkit-10-0 cuda-toolkit-10-1 cuda-toolkit-11-0 cuda-toolkit-11-1\n",
|
846 |
+
" cuda-tools-10-0 cuda-tools-10-1 cuda-tools-11-0 cuda-tools-11-1\n",
|
847 |
+
" cuda-visual-tools-10-0 cuda-visual-tools-10-1 cuda-visual-tools-11-0\n",
|
848 |
+
" cuda-visual-tools-11-1 default-jre dkms freeglut3 freeglut3-dev\n",
|
849 |
+
" keyboard-configuration libargon2-0 libcap2 libcryptsetup12\n",
|
850 |
+
" libdevmapper1.02.1 libfontenc1 libidn11 libip4tc0 libjansson4\n",
|
851 |
+
" libnvidia-cfg1-510 libnvidia-common-460 libnvidia-common-510\n",
|
852 |
+
" libnvidia-extra-510 libnvidia-fbc1-510 libnvidia-gl-510 libpam-systemd\n",
|
853 |
+
" libpolkit-agent-1-0 libpolkit-backend-1-0 libpolkit-gobject-1-0 libxfont2\n",
|
854 |
+
" libxi-dev libxkbfile1 libxmu-dev libxmu-headers libxnvctrl0 libxtst6\n",
|
855 |
+
" nsight-compute-2020.2.1 nsight-compute-2022.1.0 nsight-systems-2020.3.2\n",
|
856 |
+
" nsight-systems-2020.3.4 nsight-systems-2021.5.2 nvidia-dkms-510\n",
|
857 |
+
" nvidia-kernel-common-510 nvidia-kernel-source-510 nvidia-modprobe\n",
|
858 |
+
" nvidia-settings openjdk-11-jre policykit-1 policykit-1-gnome python3-xkit\n",
|
859 |
+
" screen-resolution-extra systemd systemd-sysv udev x11-xkb-utils\n",
|
860 |
+
" xserver-common xserver-xorg-core-hwe-18.04 xserver-xorg-video-nvidia-510\n",
|
861 |
+
"Use 'sudo apt autoremove' to remove them.\n",
|
862 |
+
"The following NEW packages will be installed:\n",
|
863 |
+
" git-lfs\n",
|
864 |
+
"0 upgraded, 1 newly installed, 0 to remove and 39 not upgraded.\n",
|
865 |
+
"Need to get 2,129 kB of archives.\n",
|
866 |
+
"After this operation, 7,662 kB of additional disk space will be used.\n",
|
867 |
+
"Get:1 http://archive.ubuntu.com/ubuntu bionic/universe amd64 git-lfs amd64 2.3.4-1 [2,129 kB]\n",
|
868 |
+
"Fetched 2,129 kB in 1s (1,551 kB/s)\n",
|
869 |
+
"debconf: unable to initialize frontend: Dialog\n",
|
870 |
+
"debconf: (No usable dialog-like program is installed, so the dialog based frontend cannot be used. at /usr/share/perl5/Debconf/FrontEnd/Dialog.pm line 76, <> line 1.)\n",
|
871 |
+
"debconf: falling back to frontend: Readline\n",
|
872 |
+
"debconf: unable to initialize frontend: Readline\n",
|
873 |
+
"debconf: (This frontend requires a controlling tty.)\n",
|
874 |
+
"debconf: falling back to frontend: Teletype\n",
|
875 |
+
"dpkg-preconfigure: unable to re-open stdin: \n",
|
876 |
+
"Selecting previously unselected package git-lfs.\n",
|
877 |
+
"(Reading database ... 155113 files and directories currently installed.)\n",
|
878 |
+
"Preparing to unpack .../git-lfs_2.3.4-1_amd64.deb ...\n",
|
879 |
+
"Unpacking git-lfs (2.3.4-1) ...\n",
|
880 |
+
"Setting up git-lfs (2.3.4-1) ...\n",
|
881 |
+
"Processing triggers for man-db (2.8.3-2ubuntu0.1) ...\n",
|
882 |
+
"Error: Failed to call git rev-parse --git-dir --show-toplevel: \"fatal: not a git repository (or any of the parent directories): .git\\n\"\n",
|
883 |
+
"Git LFS initialized.\n"
|
884 |
+
]
|
885 |
+
}
|
886 |
+
]
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"cell_type": "code",
|
890 |
+
"source": [
|
891 |
+
"!huggingface-cli login"
|
892 |
+
],
|
893 |
+
"metadata": {
|
894 |
+
"colab": {
|
895 |
+
"base_uri": "https://localhost:8080/"
|
896 |
+
},
|
897 |
+
"id": "vr7EzjdvBzHT",
|
898 |
+
"outputId": "69fa8334-c203-4000-d970-1a8b8f9f1ba6"
|
899 |
+
},
|
900 |
+
"execution_count": 15,
|
901 |
+
"outputs": [
|
902 |
+
{
|
903 |
+
"output_type": "stream",
|
904 |
+
"name": "stdout",
|
905 |
+
"text": [
|
906 |
+
"\n",
|
907 |
+
" _| _| _| _| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _|_|_|_| _|_| _|_|_| _|_|_|_|\n",
|
908 |
+
" _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|\n",
|
909 |
+
" _|_|_|_| _| _| _| _|_| _| _|_| _| _| _| _| _| _|_| _|_|_| _|_|_|_| _| _|_|_|\n",
|
910 |
+
" _| _| _| _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|\n",
|
911 |
+
" _| _| _|_| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _| _| _| _|_|_| _|_|_|_|\n",
|
912 |
+
"\n",
|
913 |
+
" To login, `huggingface_hub` now requires a token generated from https://huggingface.co/settings/token.\n",
|
914 |
+
" (Deprecated, will be removed in v0.3.0) To login with username and password instead, interrupt with Ctrl+C.\n",
|
915 |
+
" \n",
|
916 |
+
"Token: \n",
|
917 |
+
"Login successful\n",
|
918 |
+
"Your token has been saved to /root/.huggingface/token\n",
|
919 |
+
"\u001b[1m\u001b[31mAuthenticated through git-credential store but this isn't the helper defined on your machine.\n",
|
920 |
+
"You might have to re-authenticate when pushing to the Hugging Face Hub. Run the following command in your terminal in case you want to set this credential helper as the default\n",
|
921 |
+
"\n",
|
922 |
+
"git config --global credential.helper store\u001b[0m\n"
|
923 |
+
]
|
924 |
+
}
|
925 |
+
]
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"cell_type": "code",
|
929 |
+
"source": [
|
930 |
+
"from huggingface_hub.keras_mixin import push_to_hub_keras\n",
|
931 |
+
"push_to_hub_keras(model = model, repo_url = \"https://huggingface.co/keras-io/char-lstm-seq2seq\", organization = \"keras-io\")"
|
932 |
+
],
|
933 |
+
"metadata": {
|
934 |
+
"colab": {
|
935 |
+
"base_uri": "https://localhost:8080/",
|
936 |
+
"height": 345,
|
937 |
+
"referenced_widgets": [
|
938 |
+
"0873642bfadd4c37b54e92dac1de35bf",
|
939 |
+
"042ecadcff7b47fbb32069cdf1064d09",
|
940 |
+
"942b7ed2e1f0404fb5f44b266a16d0cd",
|
941 |
+
"8dcb06d036d64bad92a2117db8874bd9",
|
942 |
+
"1ef6e4d8d6ff4f3cad20a518f8f4f2cb",
|
943 |
+
"3679ebef4abc417ebb06c2f7d45bbf4b",
|
944 |
+
"60a1fc7920304a5e82499d9268e6e1a8",
|
945 |
+
"93e1a0fe3609475da590bd08fae66fa7",
|
946 |
+
"3e3abf2a02724044af294b759243bbff",
|
947 |
+
"173ac791952944b9a758a5ba47245e66",
|
948 |
+
"34e8e3a5d2a0423cab28196710bdc684",
|
949 |
+
"48c696f7e40c4ee5a41ff4e823e88e8d",
|
950 |
+
"0fec85cbc02f43568b13b6b128513849",
|
951 |
+
"0910616a312041489a80714c88219bd9",
|
952 |
+
"734f0340dd2b4cd594290e0457a5df0b",
|
953 |
+
"9462930017094b64bddaf19b5f66aa58",
|
954 |
+
"63b105a140524e7abed1c7a2eee86d70",
|
955 |
+
"ead2f71ec2034c70a970a72f18973607",
|
956 |
+
"8b814bfa9fac40f1a24d1442f95d7ae8",
|
957 |
+
"82502d93f92d4369ac159a5498c62015",
|
958 |
+
"277a1e05f0dc4afb839468c0b5c08bd7",
|
959 |
+
"0b0c60f854f54830adfdf0464701460c"
|
960 |
+
]
|
961 |
+
},
|
962 |
+
"id": "ZhPSjrEAB26W",
|
963 |
+
"outputId": "1e454a43-108a-450a-9e4e-3fa327b23e26"
|
964 |
+
},
|
965 |
+
"execution_count": 16,
|
966 |
+
"outputs": [
|
967 |
+
{
|
968 |
+
"output_type": "stream",
|
969 |
+
"name": "stderr",
|
970 |
+
"text": [
|
971 |
+
"Cloning https://huggingface.co/keras-io/char-lstm-seq2seq into local empty directory.\n",
|
972 |
+
"WARNING:huggingface_hub.repository:Cloning https://huggingface.co/keras-io/char-lstm-seq2seq into local empty directory.\n",
|
973 |
+
"WARNING:absl:Found untraced functions such as lstm_cell_2_layer_call_fn, lstm_cell_2_layer_call_and_return_conditional_losses, lstm_cell_3_layer_call_fn, lstm_cell_3_layer_call_and_return_conditional_losses, lstm_cell_2_layer_call_fn while saving (showing 5 of 10). These functions will not be directly callable after loading.\n"
|
974 |
+
]
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"output_type": "stream",
|
978 |
+
"name": "stdout",
|
979 |
+
"text": [
|
980 |
+
"INFO:tensorflow:Assets written to: char-lstm-seq2seq/assets\n"
|
981 |
+
]
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"output_type": "stream",
|
985 |
+
"name": "stderr",
|
986 |
+
"text": [
|
987 |
+
"INFO:tensorflow:Assets written to: char-lstm-seq2seq/assets\n",
|
988 |
+
"WARNING:absl:<keras.layers.recurrent.LSTMCell object at 0x7f4f5d43eed0> has the same name 'LSTMCell' as a built-in Keras object. Consider renaming <class 'keras.layers.recurrent.LSTMCell'> to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n",
|
989 |
+
"WARNING:absl:<keras.layers.recurrent.LSTMCell object at 0x7f4f5d676190> has the same name 'LSTMCell' as a built-in Keras object. Consider renaming <class 'keras.layers.recurrent.LSTMCell'> to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n"
|
990 |
+
]
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"output_type": "display_data",
|
994 |
+
"data": {
|
995 |
+
"application/vnd.jupyter.widget-view+json": {
|
996 |
+
"model_id": "0873642bfadd4c37b54e92dac1de35bf",
|
997 |
+
"version_minor": 0,
|
998 |
+
"version_major": 2
|
999 |
+
},
|
1000 |
+
"text/plain": [
|
1001 |
+
"Upload file saved_model.pb: 0%| | 3.39k/1.38M [00:00<?, ?B/s]"
|
1002 |
+
]
|
1003 |
+
},
|
1004 |
+
"metadata": {}
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"output_type": "display_data",
|
1008 |
+
"data": {
|
1009 |
+
"application/vnd.jupyter.widget-view+json": {
|
1010 |
+
"model_id": "48c696f7e40c4ee5a41ff4e823e88e8d",
|
1011 |
+
"version_minor": 0,
|
1012 |
+
"version_major": 2
|
1013 |
+
},
|
1014 |
+
"text/plain": [
|
1015 |
+
"Upload file keras_metadata.pb: 22%|##2 | 3.39k/15.3k [00:00<?, ?B/s]"
|
1016 |
+
]
|
1017 |
+
},
|
1018 |
+
"metadata": {}
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"output_type": "stream",
|
1022 |
+
"name": "stderr",
|
1023 |
+
"text": [
|
1024 |
+
"To https://huggingface.co/keras-io/char-lstm-seq2seq\n",
|
1025 |
+
" df51a58..69c5bbb main -> main\n",
|
1026 |
+
"\n",
|
1027 |
+
"WARNING:huggingface_hub.repository:To https://huggingface.co/keras-io/char-lstm-seq2seq\n",
|
1028 |
+
" df51a58..69c5bbb main -> main\n",
|
1029 |
+
"\n"
|
1030 |
+
]
|
1031 |
+
},
|
1032 |
+
{
|
1033 |
+
"output_type": "execute_result",
|
1034 |
+
"data": {
|
1035 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
1036 |
+
"type": "string"
|
1037 |
+
},
|
1038 |
+
"text/plain": [
|
1039 |
+
"'https://huggingface.co/keras-io/char-lstm-seq2seq/commit/69c5bbba7cfcad71d97557b045f3592ad5b26c39'"
|
1040 |
+
]
|
1041 |
+
},
|
1042 |
+
"metadata": {},
|
1043 |
+
"execution_count": 16
|
1044 |
+
}
|
1045 |
+
]
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"cell_type": "code",
|
1049 |
+
"source": [
|
1050 |
+
""
|
1051 |
+
],
|
1052 |
+
"metadata": {
|
1053 |
+
"id": "2TbeYdeuCJ5_"
|
1054 |
+
},
|
1055 |
+
"execution_count": null,
|
1056 |
+
"outputs": []
|
1057 |
+
}
|
1058 |
+
],
|
1059 |
+
"metadata": {
|
1060 |
+
"colab": {
|
1061 |
+
"collapsed_sections": [],
|
1062 |
+
"name": "lstm_seq2seq",
|
1063 |
+
"provenance": [],
|
1064 |
+
"machine_shape": "hm"
|
1065 |
+
},
|
1066 |
+
"kernelspec": {
|
1067 |
+
"display_name": "Python 3",
|
1068 |
+
"language": "python",
|
1069 |
+
"name": "python3"
|
1070 |
+
},
|
1071 |
+
"language_info": {
|
1072 |
+
"codemirror_mode": {
|
1073 |
+
"name": "ipython",
|
1074 |
+
"version": 3
|
1075 |
+
},
|
1076 |
+
"file_extension": ".py",
|
1077 |
+
"mimetype": "text/x-python",
|
1078 |
+
"name": "python",
|
1079 |
+
"nbconvert_exporter": "python",
|
1080 |
+
"pygments_lexer": "ipython3",
|
1081 |
+
"version": "3.7.0"
|
1082 |
+
},
|
1083 |
+
"accelerator": "GPU",
|
1084 |
+
"widgets": {
|
1085 |
+
"application/vnd.jupyter.widget-state+json": {
|
1086 |
+
"0873642bfadd4c37b54e92dac1de35bf": {
|
1087 |
+
"model_module": "@jupyter-widgets/controls",
|
1088 |
+
"model_name": "HBoxModel",
|
1089 |
+
"model_module_version": "1.5.0",
|
1090 |
+
"state": {
|
1091 |
+
"_view_name": "HBoxView",
|
1092 |
+
"_dom_classes": [],
|
1093 |
+
"_model_name": "HBoxModel",
|
1094 |
+
"_view_module": "@jupyter-widgets/controls",
|
1095 |
+
"_model_module_version": "1.5.0",
|
1096 |
+
"_view_count": null,
|
1097 |
+
"_view_module_version": "1.5.0",
|
1098 |
+
"box_style": "",
|
1099 |
+
"layout": "IPY_MODEL_042ecadcff7b47fbb32069cdf1064d09",
|
1100 |
+
"_model_module": "@jupyter-widgets/controls",
|
1101 |
+
"children": [
|
1102 |
+
"IPY_MODEL_942b7ed2e1f0404fb5f44b266a16d0cd",
|
1103 |
+
"IPY_MODEL_8dcb06d036d64bad92a2117db8874bd9",
|
1104 |
+
"IPY_MODEL_1ef6e4d8d6ff4f3cad20a518f8f4f2cb"
|
1105 |
+
]
|
1106 |
+
}
|
1107 |
+
},
|
1108 |
+
"042ecadcff7b47fbb32069cdf1064d09": {
|
1109 |
+
"model_module": "@jupyter-widgets/base",
|
1110 |
+
"model_name": "LayoutModel",
|
1111 |
+
"model_module_version": "1.2.0",
|
1112 |
+
"state": {
|
1113 |
+
"_view_name": "LayoutView",
|
1114 |
+
"grid_template_rows": null,
|
1115 |
+
"right": null,
|
1116 |
+
"justify_content": null,
|
1117 |
+
"_view_module": "@jupyter-widgets/base",
|
1118 |
+
"overflow": null,
|
1119 |
+
"_model_module_version": "1.2.0",
|
1120 |
+
"_view_count": null,
|
1121 |
+
"flex_flow": null,
|
1122 |
+
"width": null,
|
1123 |
+
"min_width": null,
|
1124 |
+
"border": null,
|
1125 |
+
"align_items": null,
|
1126 |
+
"bottom": null,
|
1127 |
+
"_model_module": "@jupyter-widgets/base",
|
1128 |
+
"top": null,
|
1129 |
+
"grid_column": null,
|
1130 |
+
"overflow_y": null,
|
1131 |
+
"overflow_x": null,
|
1132 |
+
"grid_auto_flow": null,
|
1133 |
+
"grid_area": null,
|
1134 |
+
"grid_template_columns": null,
|
1135 |
+
"flex": null,
|
1136 |
+
"_model_name": "LayoutModel",
|
1137 |
+
"justify_items": null,
|
1138 |
+
"grid_row": null,
|
1139 |
+
"max_height": null,
|
1140 |
+
"align_content": null,
|
1141 |
+
"visibility": null,
|
1142 |
+
"align_self": null,
|
1143 |
+
"height": null,
|
1144 |
+
"min_height": null,
|
1145 |
+
"padding": null,
|
1146 |
+
"grid_auto_rows": null,
|
1147 |
+
"grid_gap": null,
|
1148 |
+
"max_width": null,
|
1149 |
+
"order": null,
|
1150 |
+
"_view_module_version": "1.2.0",
|
1151 |
+
"grid_template_areas": null,
|
1152 |
+
"object_position": null,
|
1153 |
+
"object_fit": null,
|
1154 |
+
"grid_auto_columns": null,
|
1155 |
+
"margin": null,
|
1156 |
+
"display": null,
|
1157 |
+
"left": null
|
1158 |
+
}
|
1159 |
+
},
|
1160 |
+
"942b7ed2e1f0404fb5f44b266a16d0cd": {
|
1161 |
+
"model_module": "@jupyter-widgets/controls",
|
1162 |
+
"model_name": "HTMLModel",
|
1163 |
+
"model_module_version": "1.5.0",
|
1164 |
+
"state": {
|
1165 |
+
"_view_name": "HTMLView",
|
1166 |
+
"style": "IPY_MODEL_3679ebef4abc417ebb06c2f7d45bbf4b",
|
1167 |
+
"_dom_classes": [],
|
1168 |
+
"description": "",
|
1169 |
+
"_model_name": "HTMLModel",
|
1170 |
+
"placeholder": "",
|
1171 |
+
"_view_module": "@jupyter-widgets/controls",
|
1172 |
+
"_model_module_version": "1.5.0",
|
1173 |
+
"value": "Upload file saved_model.pb: 100%",
|
1174 |
+
"_view_count": null,
|
1175 |
+
"_view_module_version": "1.5.0",
|
1176 |
+
"description_tooltip": null,
|
1177 |
+
"_model_module": "@jupyter-widgets/controls",
|
1178 |
+
"layout": "IPY_MODEL_60a1fc7920304a5e82499d9268e6e1a8"
|
1179 |
+
}
|
1180 |
+
},
|
1181 |
+
"8dcb06d036d64bad92a2117db8874bd9": {
|
1182 |
+
"model_module": "@jupyter-widgets/controls",
|
1183 |
+
"model_name": "FloatProgressModel",
|
1184 |
+
"model_module_version": "1.5.0",
|
1185 |
+
"state": {
|
1186 |
+
"_view_name": "ProgressView",
|
1187 |
+
"style": "IPY_MODEL_93e1a0fe3609475da590bd08fae66fa7",
|
1188 |
+
"_dom_classes": [],
|
1189 |
+
"description": "",
|
1190 |
+
"_model_name": "FloatProgressModel",
|
1191 |
+
"bar_style": "success",
|
1192 |
+
"max": 1444428,
|
1193 |
+
"_view_module": "@jupyter-widgets/controls",
|
1194 |
+
"_model_module_version": "1.5.0",
|
1195 |
+
"value": 1444428,
|
1196 |
+
"_view_count": null,
|
1197 |
+
"_view_module_version": "1.5.0",
|
1198 |
+
"orientation": "horizontal",
|
1199 |
+
"min": 0,
|
1200 |
+
"description_tooltip": null,
|
1201 |
+
"_model_module": "@jupyter-widgets/controls",
|
1202 |
+
"layout": "IPY_MODEL_3e3abf2a02724044af294b759243bbff"
|
1203 |
+
}
|
1204 |
+
},
|
1205 |
+
"1ef6e4d8d6ff4f3cad20a518f8f4f2cb": {
|
1206 |
+
"model_module": "@jupyter-widgets/controls",
|
1207 |
+
"model_name": "HTMLModel",
|
1208 |
+
"model_module_version": "1.5.0",
|
1209 |
+
"state": {
|
1210 |
+
"_view_name": "HTMLView",
|
1211 |
+
"style": "IPY_MODEL_173ac791952944b9a758a5ba47245e66",
|
1212 |
+
"_dom_classes": [],
|
1213 |
+
"description": "",
|
1214 |
+
"_model_name": "HTMLModel",
|
1215 |
+
"placeholder": "",
|
1216 |
+
"_view_module": "@jupyter-widgets/controls",
|
1217 |
+
"_model_module_version": "1.5.0",
|
1218 |
+
"value": " 1.38M/1.38M [00:06<00:00, 188kB/s]",
|
1219 |
+
"_view_count": null,
|
1220 |
+
"_view_module_version": "1.5.0",
|
1221 |
+
"description_tooltip": null,
|
1222 |
+
"_model_module": "@jupyter-widgets/controls",
|
1223 |
+
"layout": "IPY_MODEL_34e8e3a5d2a0423cab28196710bdc684"
|
1224 |
+
}
|
1225 |
+
},
|
1226 |
+
"3679ebef4abc417ebb06c2f7d45bbf4b": {
|
1227 |
+
"model_module": "@jupyter-widgets/controls",
|
1228 |
+
"model_name": "DescriptionStyleModel",
|
1229 |
+
"model_module_version": "1.5.0",
|
1230 |
+
"state": {
|
1231 |
+
"_view_name": "StyleView",
|
1232 |
+
"_model_name": "DescriptionStyleModel",
|
1233 |
+
"description_width": "",
|
1234 |
+
"_view_module": "@jupyter-widgets/base",
|
1235 |
+
"_model_module_version": "1.5.0",
|
1236 |
+
"_view_count": null,
|
1237 |
+
"_view_module_version": "1.2.0",
|
1238 |
+
"_model_module": "@jupyter-widgets/controls"
|
1239 |
+
}
|
1240 |
+
},
|
1241 |
+
"60a1fc7920304a5e82499d9268e6e1a8": {
|
1242 |
+
"model_module": "@jupyter-widgets/base",
|
1243 |
+
"model_name": "LayoutModel",
|
1244 |
+
"model_module_version": "1.2.0",
|
1245 |
+
"state": {
|
1246 |
+
"_view_name": "LayoutView",
|
1247 |
+
"grid_template_rows": null,
|
1248 |
+
"right": null,
|
1249 |
+
"justify_content": null,
|
1250 |
+
"_view_module": "@jupyter-widgets/base",
|
1251 |
+
"overflow": null,
|
1252 |
+
"_model_module_version": "1.2.0",
|
1253 |
+
"_view_count": null,
|
1254 |
+
"flex_flow": null,
|
1255 |
+
"width": null,
|
1256 |
+
"min_width": null,
|
1257 |
+
"border": null,
|
1258 |
+
"align_items": null,
|
1259 |
+
"bottom": null,
|
1260 |
+
"_model_module": "@jupyter-widgets/base",
|
1261 |
+
"top": null,
|
1262 |
+
"grid_column": null,
|
1263 |
+
"overflow_y": null,
|
1264 |
+
"overflow_x": null,
|
1265 |
+
"grid_auto_flow": null,
|
1266 |
+
"grid_area": null,
|
1267 |
+
"grid_template_columns": null,
|
1268 |
+
"flex": null,
|
1269 |
+
"_model_name": "LayoutModel",
|
1270 |
+
"justify_items": null,
|
1271 |
+
"grid_row": null,
|
1272 |
+
"max_height": null,
|
1273 |
+
"align_content": null,
|
1274 |
+
"visibility": null,
|
1275 |
+
"align_self": null,
|
1276 |
+
"height": null,
|
1277 |
+
"min_height": null,
|
1278 |
+
"padding": null,
|
1279 |
+
"grid_auto_rows": null,
|
1280 |
+
"grid_gap": null,
|
1281 |
+
"max_width": null,
|
1282 |
+
"order": null,
|
1283 |
+
"_view_module_version": "1.2.0",
|
1284 |
+
"grid_template_areas": null,
|
1285 |
+
"object_position": null,
|
1286 |
+
"object_fit": null,
|
1287 |
+
"grid_auto_columns": null,
|
1288 |
+
"margin": null,
|
1289 |
+
"display": null,
|
1290 |
+
"left": null
|
1291 |
+
}
|
1292 |
+
},
|
1293 |
+
"93e1a0fe3609475da590bd08fae66fa7": {
|
1294 |
+
"model_module": "@jupyter-widgets/controls",
|
1295 |
+
"model_name": "ProgressStyleModel",
|
1296 |
+
"model_module_version": "1.5.0",
|
1297 |
+
"state": {
|
1298 |
+
"_view_name": "StyleView",
|
1299 |
+
"_model_name": "ProgressStyleModel",
|
1300 |
+
"description_width": "",
|
1301 |
+
"_view_module": "@jupyter-widgets/base",
|
1302 |
+
"_model_module_version": "1.5.0",
|
1303 |
+
"_view_count": null,
|
1304 |
+
"_view_module_version": "1.2.0",
|
1305 |
+
"bar_color": null,
|
1306 |
+
"_model_module": "@jupyter-widgets/controls"
|
1307 |
+
}
|
1308 |
+
},
|
1309 |
+
"3e3abf2a02724044af294b759243bbff": {
|
1310 |
+
"model_module": "@jupyter-widgets/base",
|
1311 |
+
"model_name": "LayoutModel",
|
1312 |
+
"model_module_version": "1.2.0",
|
1313 |
+
"state": {
|
1314 |
+
"_view_name": "LayoutView",
|
1315 |
+
"grid_template_rows": null,
|
1316 |
+
"right": null,
|
1317 |
+
"justify_content": null,
|
1318 |
+
"_view_module": "@jupyter-widgets/base",
|
1319 |
+
"overflow": null,
|
1320 |
+
"_model_module_version": "1.2.0",
|
1321 |
+
"_view_count": null,
|
1322 |
+
"flex_flow": null,
|
1323 |
+
"width": null,
|
1324 |
+
"min_width": null,
|
1325 |
+
"border": null,
|
1326 |
+
"align_items": null,
|
1327 |
+
"bottom": null,
|
1328 |
+
"_model_module": "@jupyter-widgets/base",
|
1329 |
+
"top": null,
|
1330 |
+
"grid_column": null,
|
1331 |
+
"overflow_y": null,
|
1332 |
+
"overflow_x": null,
|
1333 |
+
"grid_auto_flow": null,
|
1334 |
+
"grid_area": null,
|
1335 |
+
"grid_template_columns": null,
|
1336 |
+
"flex": null,
|
1337 |
+
"_model_name": "LayoutModel",
|
1338 |
+
"justify_items": null,
|
1339 |
+
"grid_row": null,
|
1340 |
+
"max_height": null,
|
1341 |
+
"align_content": null,
|
1342 |
+
"visibility": null,
|
1343 |
+
"align_self": null,
|
1344 |
+
"height": null,
|
1345 |
+
"min_height": null,
|
1346 |
+
"padding": null,
|
1347 |
+
"grid_auto_rows": null,
|
1348 |
+
"grid_gap": null,
|
1349 |
+
"max_width": null,
|
1350 |
+
"order": null,
|
1351 |
+
"_view_module_version": "1.2.0",
|
1352 |
+
"grid_template_areas": null,
|
1353 |
+
"object_position": null,
|
1354 |
+
"object_fit": null,
|
1355 |
+
"grid_auto_columns": null,
|
1356 |
+
"margin": null,
|
1357 |
+
"display": null,
|
1358 |
+
"left": null
|
1359 |
+
}
|
1360 |
+
},
|
1361 |
+
"173ac791952944b9a758a5ba47245e66": {
|
1362 |
+
"model_module": "@jupyter-widgets/controls",
|
1363 |
+
"model_name": "DescriptionStyleModel",
|
1364 |
+
"model_module_version": "1.5.0",
|
1365 |
+
"state": {
|
1366 |
+
"_view_name": "StyleView",
|
1367 |
+
"_model_name": "DescriptionStyleModel",
|
1368 |
+
"description_width": "",
|
1369 |
+
"_view_module": "@jupyter-widgets/base",
|
1370 |
+
"_model_module_version": "1.5.0",
|
1371 |
+
"_view_count": null,
|
1372 |
+
"_view_module_version": "1.2.0",
|
1373 |
+
"_model_module": "@jupyter-widgets/controls"
|
1374 |
+
}
|
1375 |
+
},
|
1376 |
+
"34e8e3a5d2a0423cab28196710bdc684": {
|
1377 |
+
"model_module": "@jupyter-widgets/base",
|
1378 |
+
"model_name": "LayoutModel",
|
1379 |
+
"model_module_version": "1.2.0",
|
1380 |
+
"state": {
|
1381 |
+
"_view_name": "LayoutView",
|
1382 |
+
"grid_template_rows": null,
|
1383 |
+
"right": null,
|
1384 |
+
"justify_content": null,
|
1385 |
+
"_view_module": "@jupyter-widgets/base",
|
1386 |
+
"overflow": null,
|
1387 |
+
"_model_module_version": "1.2.0",
|
1388 |
+
"_view_count": null,
|
1389 |
+
"flex_flow": null,
|
1390 |
+
"width": null,
|
1391 |
+
"min_width": null,
|
1392 |
+
"border": null,
|
1393 |
+
"align_items": null,
|
1394 |
+
"bottom": null,
|
1395 |
+
"_model_module": "@jupyter-widgets/base",
|
1396 |
+
"top": null,
|
1397 |
+
"grid_column": null,
|
1398 |
+
"overflow_y": null,
|
1399 |
+
"overflow_x": null,
|
1400 |
+
"grid_auto_flow": null,
|
1401 |
+
"grid_area": null,
|
1402 |
+
"grid_template_columns": null,
|
1403 |
+
"flex": null,
|
1404 |
+
"_model_name": "LayoutModel",
|
1405 |
+
"justify_items": null,
|
1406 |
+
"grid_row": null,
|
1407 |
+
"max_height": null,
|
1408 |
+
"align_content": null,
|
1409 |
+
"visibility": null,
|
1410 |
+
"align_self": null,
|
1411 |
+
"height": null,
|
1412 |
+
"min_height": null,
|
1413 |
+
"padding": null,
|
1414 |
+
"grid_auto_rows": null,
|
1415 |
+
"grid_gap": null,
|
1416 |
+
"max_width": null,
|
1417 |
+
"order": null,
|
1418 |
+
"_view_module_version": "1.2.0",
|
1419 |
+
"grid_template_areas": null,
|
1420 |
+
"object_position": null,
|
1421 |
+
"object_fit": null,
|
1422 |
+
"grid_auto_columns": null,
|
1423 |
+
"margin": null,
|
1424 |
+
"display": null,
|
1425 |
+
"left": null
|
1426 |
+
}
|
1427 |
+
},
|
1428 |
+
"48c696f7e40c4ee5a41ff4e823e88e8d": {
|
1429 |
+
"model_module": "@jupyter-widgets/controls",
|
1430 |
+
"model_name": "HBoxModel",
|
1431 |
+
"model_module_version": "1.5.0",
|
1432 |
+
"state": {
|
1433 |
+
"_view_name": "HBoxView",
|
1434 |
+
"_dom_classes": [],
|
1435 |
+
"_model_name": "HBoxModel",
|
1436 |
+
"_view_module": "@jupyter-widgets/controls",
|
1437 |
+
"_model_module_version": "1.5.0",
|
1438 |
+
"_view_count": null,
|
1439 |
+
"_view_module_version": "1.5.0",
|
1440 |
+
"box_style": "",
|
1441 |
+
"layout": "IPY_MODEL_0fec85cbc02f43568b13b6b128513849",
|
1442 |
+
"_model_module": "@jupyter-widgets/controls",
|
1443 |
+
"children": [
|
1444 |
+
"IPY_MODEL_0910616a312041489a80714c88219bd9",
|
1445 |
+
"IPY_MODEL_734f0340dd2b4cd594290e0457a5df0b",
|
1446 |
+
"IPY_MODEL_9462930017094b64bddaf19b5f66aa58"
|
1447 |
+
]
|
1448 |
+
}
|
1449 |
+
},
|
1450 |
+
"0fec85cbc02f43568b13b6b128513849": {
|
1451 |
+
"model_module": "@jupyter-widgets/base",
|
1452 |
+
"model_name": "LayoutModel",
|
1453 |
+
"model_module_version": "1.2.0",
|
1454 |
+
"state": {
|
1455 |
+
"_view_name": "LayoutView",
|
1456 |
+
"grid_template_rows": null,
|
1457 |
+
"right": null,
|
1458 |
+
"justify_content": null,
|
1459 |
+
"_view_module": "@jupyter-widgets/base",
|
1460 |
+
"overflow": null,
|
1461 |
+
"_model_module_version": "1.2.0",
|
1462 |
+
"_view_count": null,
|
1463 |
+
"flex_flow": null,
|
1464 |
+
"width": null,
|
1465 |
+
"min_width": null,
|
1466 |
+
"border": null,
|
1467 |
+
"align_items": null,
|
1468 |
+
"bottom": null,
|
1469 |
+
"_model_module": "@jupyter-widgets/base",
|
1470 |
+
"top": null,
|
1471 |
+
"grid_column": null,
|
1472 |
+
"overflow_y": null,
|
1473 |
+
"overflow_x": null,
|
1474 |
+
"grid_auto_flow": null,
|
1475 |
+
"grid_area": null,
|
1476 |
+
"grid_template_columns": null,
|
1477 |
+
"flex": null,
|
1478 |
+
"_model_name": "LayoutModel",
|
1479 |
+
"justify_items": null,
|
1480 |
+
"grid_row": null,
|
1481 |
+
"max_height": null,
|
1482 |
+
"align_content": null,
|
1483 |
+
"visibility": null,
|
1484 |
+
"align_self": null,
|
1485 |
+
"height": null,
|
1486 |
+
"min_height": null,
|
1487 |
+
"padding": null,
|
1488 |
+
"grid_auto_rows": null,
|
1489 |
+
"grid_gap": null,
|
1490 |
+
"max_width": null,
|
1491 |
+
"order": null,
|
1492 |
+
"_view_module_version": "1.2.0",
|
1493 |
+
"grid_template_areas": null,
|
1494 |
+
"object_position": null,
|
1495 |
+
"object_fit": null,
|
1496 |
+
"grid_auto_columns": null,
|
1497 |
+
"margin": null,
|
1498 |
+
"display": null,
|
1499 |
+
"left": null
|
1500 |
+
}
|
1501 |
+
},
|
1502 |
+
"0910616a312041489a80714c88219bd9": {
|
1503 |
+
"model_module": "@jupyter-widgets/controls",
|
1504 |
+
"model_name": "HTMLModel",
|
1505 |
+
"model_module_version": "1.5.0",
|
1506 |
+
"state": {
|
1507 |
+
"_view_name": "HTMLView",
|
1508 |
+
"style": "IPY_MODEL_63b105a140524e7abed1c7a2eee86d70",
|
1509 |
+
"_dom_classes": [],
|
1510 |
+
"description": "",
|
1511 |
+
"_model_name": "HTMLModel",
|
1512 |
+
"placeholder": "",
|
1513 |
+
"_view_module": "@jupyter-widgets/controls",
|
1514 |
+
"_model_module_version": "1.5.0",
|
1515 |
+
"value": "Upload file keras_metadata.pb: 100%",
|
1516 |
+
"_view_count": null,
|
1517 |
+
"_view_module_version": "1.5.0",
|
1518 |
+
"description_tooltip": null,
|
1519 |
+
"_model_module": "@jupyter-widgets/controls",
|
1520 |
+
"layout": "IPY_MODEL_ead2f71ec2034c70a970a72f18973607"
|
1521 |
+
}
|
1522 |
+
},
|
1523 |
+
"734f0340dd2b4cd594290e0457a5df0b": {
|
1524 |
+
"model_module": "@jupyter-widgets/controls",
|
1525 |
+
"model_name": "FloatProgressModel",
|
1526 |
+
"model_module_version": "1.5.0",
|
1527 |
+
"state": {
|
1528 |
+
"_view_name": "ProgressView",
|
1529 |
+
"style": "IPY_MODEL_8b814bfa9fac40f1a24d1442f95d7ae8",
|
1530 |
+
"_dom_classes": [],
|
1531 |
+
"description": "",
|
1532 |
+
"_model_name": "FloatProgressModel",
|
1533 |
+
"bar_style": "success",
|
1534 |
+
"max": 15672,
|
1535 |
+
"_view_module": "@jupyter-widgets/controls",
|
1536 |
+
"_model_module_version": "1.5.0",
|
1537 |
+
"value": 15672,
|
1538 |
+
"_view_count": null,
|
1539 |
+
"_view_module_version": "1.5.0",
|
1540 |
+
"orientation": "horizontal",
|
1541 |
+
"min": 0,
|
1542 |
+
"description_tooltip": null,
|
1543 |
+
"_model_module": "@jupyter-widgets/controls",
|
1544 |
+
"layout": "IPY_MODEL_82502d93f92d4369ac159a5498c62015"
|
1545 |
+
}
|
1546 |
+
},
|
1547 |
+
"9462930017094b64bddaf19b5f66aa58": {
|
1548 |
+
"model_module": "@jupyter-widgets/controls",
|
1549 |
+
"model_name": "HTMLModel",
|
1550 |
+
"model_module_version": "1.5.0",
|
1551 |
+
"state": {
|
1552 |
+
"_view_name": "HTMLView",
|
1553 |
+
"style": "IPY_MODEL_277a1e05f0dc4afb839468c0b5c08bd7",
|
1554 |
+
"_dom_classes": [],
|
1555 |
+
"description": "",
|
1556 |
+
"_model_name": "HTMLModel",
|
1557 |
+
"placeholder": "",
|
1558 |
+
"_view_module": "@jupyter-widgets/controls",
|
1559 |
+
"_model_module_version": "1.5.0",
|
1560 |
+
"value": " 15.3k/15.3k [00:06<00:00, 2.02kB/s]",
|
1561 |
+
"_view_count": null,
|
1562 |
+
"_view_module_version": "1.5.0",
|
1563 |
+
"description_tooltip": null,
|
1564 |
+
"_model_module": "@jupyter-widgets/controls",
|
1565 |
+
"layout": "IPY_MODEL_0b0c60f854f54830adfdf0464701460c"
|
1566 |
+
}
|
1567 |
+
},
|
1568 |
+
"63b105a140524e7abed1c7a2eee86d70": {
|
1569 |
+
"model_module": "@jupyter-widgets/controls",
|
1570 |
+
"model_name": "DescriptionStyleModel",
|
1571 |
+
"model_module_version": "1.5.0",
|
1572 |
+
"state": {
|
1573 |
+
"_view_name": "StyleView",
|
1574 |
+
"_model_name": "DescriptionStyleModel",
|
1575 |
+
"description_width": "",
|
1576 |
+
"_view_module": "@jupyter-widgets/base",
|
1577 |
+
"_model_module_version": "1.5.0",
|
1578 |
+
"_view_count": null,
|
1579 |
+
"_view_module_version": "1.2.0",
|
1580 |
+
"_model_module": "@jupyter-widgets/controls"
|
1581 |
+
}
|
1582 |
+
},
|
1583 |
+
"ead2f71ec2034c70a970a72f18973607": {
|
1584 |
+
"model_module": "@jupyter-widgets/base",
|
1585 |
+
"model_name": "LayoutModel",
|
1586 |
+
"model_module_version": "1.2.0",
|
1587 |
+
"state": {
|
1588 |
+
"_view_name": "LayoutView",
|
1589 |
+
"grid_template_rows": null,
|
1590 |
+
"right": null,
|
1591 |
+
"justify_content": null,
|
1592 |
+
"_view_module": "@jupyter-widgets/base",
|
1593 |
+
"overflow": null,
|
1594 |
+
"_model_module_version": "1.2.0",
|
1595 |
+
"_view_count": null,
|
1596 |
+
"flex_flow": null,
|
1597 |
+
"width": null,
|
1598 |
+
"min_width": null,
|
1599 |
+
"border": null,
|
1600 |
+
"align_items": null,
|
1601 |
+
"bottom": null,
|
1602 |
+
"_model_module": "@jupyter-widgets/base",
|
1603 |
+
"top": null,
|
1604 |
+
"grid_column": null,
|
1605 |
+
"overflow_y": null,
|
1606 |
+
"overflow_x": null,
|
1607 |
+
"grid_auto_flow": null,
|
1608 |
+
"grid_area": null,
|
1609 |
+
"grid_template_columns": null,
|
1610 |
+
"flex": null,
|
1611 |
+
"_model_name": "LayoutModel",
|
1612 |
+
"justify_items": null,
|
1613 |
+
"grid_row": null,
|
1614 |
+
"max_height": null,
|
1615 |
+
"align_content": null,
|
1616 |
+
"visibility": null,
|
1617 |
+
"align_self": null,
|
1618 |
+
"height": null,
|
1619 |
+
"min_height": null,
|
1620 |
+
"padding": null,
|
1621 |
+
"grid_auto_rows": null,
|
1622 |
+
"grid_gap": null,
|
1623 |
+
"max_width": null,
|
1624 |
+
"order": null,
|
1625 |
+
"_view_module_version": "1.2.0",
|
1626 |
+
"grid_template_areas": null,
|
1627 |
+
"object_position": null,
|
1628 |
+
"object_fit": null,
|
1629 |
+
"grid_auto_columns": null,
|
1630 |
+
"margin": null,
|
1631 |
+
"display": null,
|
1632 |
+
"left": null
|
1633 |
+
}
|
1634 |
+
},
|
1635 |
+
"8b814bfa9fac40f1a24d1442f95d7ae8": {
|
1636 |
+
"model_module": "@jupyter-widgets/controls",
|
1637 |
+
"model_name": "ProgressStyleModel",
|
1638 |
+
"model_module_version": "1.5.0",
|
1639 |
+
"state": {
|
1640 |
+
"_view_name": "StyleView",
|
1641 |
+
"_model_name": "ProgressStyleModel",
|
1642 |
+
"description_width": "",
|
1643 |
+
"_view_module": "@jupyter-widgets/base",
|
1644 |
+
"_model_module_version": "1.5.0",
|
1645 |
+
"_view_count": null,
|
1646 |
+
"_view_module_version": "1.2.0",
|
1647 |
+
"bar_color": null,
|
1648 |
+
"_model_module": "@jupyter-widgets/controls"
|
1649 |
+
}
|
1650 |
+
},
|
1651 |
+
"82502d93f92d4369ac159a5498c62015": {
|
1652 |
+
"model_module": "@jupyter-widgets/base",
|
1653 |
+
"model_name": "LayoutModel",
|
1654 |
+
"model_module_version": "1.2.0",
|
1655 |
+
"state": {
|
1656 |
+
"_view_name": "LayoutView",
|
1657 |
+
"grid_template_rows": null,
|
1658 |
+
"right": null,
|
1659 |
+
"justify_content": null,
|
1660 |
+
"_view_module": "@jupyter-widgets/base",
|
1661 |
+
"overflow": null,
|
1662 |
+
"_model_module_version": "1.2.0",
|
1663 |
+
"_view_count": null,
|
1664 |
+
"flex_flow": null,
|
1665 |
+
"width": null,
|
1666 |
+
"min_width": null,
|
1667 |
+
"border": null,
|
1668 |
+
"align_items": null,
|
1669 |
+
"bottom": null,
|
1670 |
+
"_model_module": "@jupyter-widgets/base",
|
1671 |
+
"top": null,
|
1672 |
+
"grid_column": null,
|
1673 |
+
"overflow_y": null,
|
1674 |
+
"overflow_x": null,
|
1675 |
+
"grid_auto_flow": null,
|
1676 |
+
"grid_area": null,
|
1677 |
+
"grid_template_columns": null,
|
1678 |
+
"flex": null,
|
1679 |
+
"_model_name": "LayoutModel",
|
1680 |
+
"justify_items": null,
|
1681 |
+
"grid_row": null,
|
1682 |
+
"max_height": null,
|
1683 |
+
"align_content": null,
|
1684 |
+
"visibility": null,
|
1685 |
+
"align_self": null,
|
1686 |
+
"height": null,
|
1687 |
+
"min_height": null,
|
1688 |
+
"padding": null,
|
1689 |
+
"grid_auto_rows": null,
|
1690 |
+
"grid_gap": null,
|
1691 |
+
"max_width": null,
|
1692 |
+
"order": null,
|
1693 |
+
"_view_module_version": "1.2.0",
|
1694 |
+
"grid_template_areas": null,
|
1695 |
+
"object_position": null,
|
1696 |
+
"object_fit": null,
|
1697 |
+
"grid_auto_columns": null,
|
1698 |
+
"margin": null,
|
1699 |
+
"display": null,
|
1700 |
+
"left": null
|
1701 |
+
}
|
1702 |
+
},
|
1703 |
+
"277a1e05f0dc4afb839468c0b5c08bd7": {
|
1704 |
+
"model_module": "@jupyter-widgets/controls",
|
1705 |
+
"model_name": "DescriptionStyleModel",
|
1706 |
+
"model_module_version": "1.5.0",
|
1707 |
+
"state": {
|
1708 |
+
"_view_name": "StyleView",
|
1709 |
+
"_model_name": "DescriptionStyleModel",
|
1710 |
+
"description_width": "",
|
1711 |
+
"_view_module": "@jupyter-widgets/base",
|
1712 |
+
"_model_module_version": "1.5.0",
|
1713 |
+
"_view_count": null,
|
1714 |
+
"_view_module_version": "1.2.0",
|
1715 |
+
"_model_module": "@jupyter-widgets/controls"
|
1716 |
+
}
|
1717 |
+
},
|
1718 |
+
"0b0c60f854f54830adfdf0464701460c": {
|
1719 |
+
"model_module": "@jupyter-widgets/base",
|
1720 |
+
"model_name": "LayoutModel",
|
1721 |
+
"model_module_version": "1.2.0",
|
1722 |
+
"state": {
|
1723 |
+
"_view_name": "LayoutView",
|
1724 |
+
"grid_template_rows": null,
|
1725 |
+
"right": null,
|
1726 |
+
"justify_content": null,
|
1727 |
+
"_view_module": "@jupyter-widgets/base",
|
1728 |
+
"overflow": null,
|
1729 |
+
"_model_module_version": "1.2.0",
|
1730 |
+
"_view_count": null,
|
1731 |
+
"flex_flow": null,
|
1732 |
+
"width": null,
|
1733 |
+
"min_width": null,
|
1734 |
+
"border": null,
|
1735 |
+
"align_items": null,
|
1736 |
+
"bottom": null,
|
1737 |
+
"_model_module": "@jupyter-widgets/base",
|
1738 |
+
"top": null,
|
1739 |
+
"grid_column": null,
|
1740 |
+
"overflow_y": null,
|
1741 |
+
"overflow_x": null,
|
1742 |
+
"grid_auto_flow": null,
|
1743 |
+
"grid_area": null,
|
1744 |
+
"grid_template_columns": null,
|
1745 |
+
"flex": null,
|
1746 |
+
"_model_name": "LayoutModel",
|
1747 |
+
"justify_items": null,
|
1748 |
+
"grid_row": null,
|
1749 |
+
"max_height": null,
|
1750 |
+
"align_content": null,
|
1751 |
+
"visibility": null,
|
1752 |
+
"align_self": null,
|
1753 |
+
"height": null,
|
1754 |
+
"min_height": null,
|
1755 |
+
"padding": null,
|
1756 |
+
"grid_auto_rows": null,
|
1757 |
+
"grid_gap": null,
|
1758 |
+
"max_width": null,
|
1759 |
+
"order": null,
|
1760 |
+
"_view_module_version": "1.2.0",
|
1761 |
+
"grid_template_areas": null,
|
1762 |
+
"object_position": null,
|
1763 |
+
"object_fit": null,
|
1764 |
+
"grid_auto_columns": null,
|
1765 |
+
"margin": null,
|
1766 |
+
"display": null,
|
1767 |
+
"left": null
|
1768 |
+
}
|
1769 |
+
}
|
1770 |
+
}
|
1771 |
+
}
|
1772 |
+
},
|
1773 |
+
"nbformat": 4,
|
1774 |
+
"nbformat_minor": 0
|
1775 |
+
}
|