anuragshas commited on
Commit
33e32b0
·
1 Parent(s): 69c5bbb

Upload lstm_seq2seq.ipynb

Browse files
Files changed (1) hide show
  1. lstm_seq2seq.ipynb +1775 -0
lstm_seq2seq.ipynb ADDED
@@ -0,0 +1,1775 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {
6
+ "id": "pUWCd_Ch5J49"
7
+ },
8
+ "source": [
9
+ "# Character-level recurrent sequence-to-sequence model\n",
10
+ "\n",
11
+ "**Author:** [fchollet](https://twitter.com/fchollet)<br>\n",
12
+ "**Date created:** 2017/09/29<br>\n",
13
+ "**Last modified:** 2020/04/26<br>\n",
14
+ "**Description:** Character-level recurrent sequence-to-sequence model."
15
+ ]
16
+ },
17
+ {
18
+ "cell_type": "markdown",
19
+ "metadata": {
20
+ "id": "y2uZhuQ-5J5B"
21
+ },
22
+ "source": [
23
+ "## Introduction\n",
24
+ "\n",
25
+ "This example demonstrates how to implement a basic character-level\n",
26
+ "recurrent sequence-to-sequence model. We apply it to translating\n",
27
+ "short English sentences into short French sentences,\n",
28
+ "character-by-character. Note that it is fairly unusual to\n",
29
+ "do character-level machine translation, as word-level\n",
30
+ "models are more common in this domain.\n",
31
+ "\n",
32
+ "**Summary of the algorithm**\n",
33
+ "\n",
34
+ "- We start with input sequences from a domain (e.g. English sentences)\n",
35
+ " and corresponding target sequences from another domain\n",
36
+ " (e.g. French sentences).\n",
37
+ "- An encoder LSTM turns input sequences to 2 state vectors\n",
38
+ " (we keep the last LSTM state and discard the outputs).\n",
39
+ "- A decoder LSTM is trained to turn the target sequences into\n",
40
+ " the same sequence but offset by one timestep in the future,\n",
41
+ " a training process called \"teacher forcing\" in this context.\n",
42
+ " It uses as initial state the state vectors from the encoder.\n",
43
+ " Effectively, the decoder learns to generate `targets[t+1...]`\n",
44
+ " given `targets[...t]`, conditioned on the input sequence.\n",
45
+ "- In inference mode, when we want to decode unknown input sequences, we:\n",
46
+ " - Encode the input sequence into state vectors\n",
47
+ " - Start with a target sequence of size 1\n",
48
+ " (just the start-of-sequence character)\n",
49
+ " - Feed the state vectors and 1-char target sequence\n",
50
+ " to the decoder to produce predictions for the next character\n",
51
+ " - Sample the next character using these predictions\n",
52
+ " (we simply use argmax).\n",
53
+ " - Append the sampled character to the target sequence\n",
54
+ " - Repeat until we generate the end-of-sequence character or we\n",
55
+ " hit the character limit.\n"
56
+ ]
57
+ },
58
+ {
59
+ "cell_type": "markdown",
60
+ "metadata": {
61
+ "id": "ymvVW7f55J5C"
62
+ },
63
+ "source": [
64
+ "## Setup\n"
65
+ ]
66
+ },
67
+ {
68
+ "cell_type": "code",
69
+ "execution_count": 1,
70
+ "metadata": {
71
+ "id": "IKzDuATV5J5C"
72
+ },
73
+ "outputs": [],
74
+ "source": [
75
+ "import numpy as np\n",
76
+ "import tensorflow as tf\n",
77
+ "from tensorflow import keras\n"
78
+ ]
79
+ },
80
+ {
81
+ "cell_type": "markdown",
82
+ "metadata": {
83
+ "id": "KsdDP8835J5D"
84
+ },
85
+ "source": [
86
+ "## Download the data\n"
87
+ ]
88
+ },
89
+ {
90
+ "cell_type": "code",
91
+ "execution_count": 2,
92
+ "metadata": {
93
+ "id": "QjrXitpv5J5E",
94
+ "colab": {
95
+ "base_uri": "https://localhost:8080/"
96
+ },
97
+ "outputId": "a5c71e87-b3c7-419e-d987-5f2551c0e236"
98
+ },
99
+ "outputs": [
100
+ {
101
+ "output_type": "execute_result",
102
+ "data": {
103
+ "text/plain": [
104
+ "['Archive: fra-eng.zip',\n",
105
+ " ' inflating: _about.txt ',\n",
106
+ " ' inflating: fra.txt ']"
107
+ ]
108
+ },
109
+ "metadata": {},
110
+ "execution_count": 2
111
+ }
112
+ ],
113
+ "source": [
114
+ "!!curl -O http://www.manythings.org/anki/fra-eng.zip\n",
115
+ "!!unzip fra-eng.zip\n"
116
+ ]
117
+ },
118
+ {
119
+ "cell_type": "markdown",
120
+ "metadata": {
121
+ "id": "4Qi0m1NC5J5E"
122
+ },
123
+ "source": [
124
+ "## Configuration\n"
125
+ ]
126
+ },
127
+ {
128
+ "cell_type": "code",
129
+ "execution_count": 3,
130
+ "metadata": {
131
+ "id": "UB6qEq0b5J5F"
132
+ },
133
+ "outputs": [],
134
+ "source": [
135
+ "batch_size = 64 # Batch size for training.\n",
136
+ "epochs = 100 # Number of epochs to train for.\n",
137
+ "latent_dim = 256 # Latent dimensionality of the encoding space.\n",
138
+ "num_samples = 10000 # Number of samples to train on.\n",
139
+ "# Path to the data txt file on disk.\n",
140
+ "data_path = \"fra.txt\"\n"
141
+ ]
142
+ },
143
+ {
144
+ "cell_type": "markdown",
145
+ "metadata": {
146
+ "id": "50hqcmjH5J5F"
147
+ },
148
+ "source": [
149
+ "## Prepare the data\n"
150
+ ]
151
+ },
152
+ {
153
+ "cell_type": "code",
154
+ "execution_count": 4,
155
+ "metadata": {
156
+ "id": "XIoa7eHS5J5G",
157
+ "colab": {
158
+ "base_uri": "https://localhost:8080/"
159
+ },
160
+ "outputId": "583ed656-723a-4c36-eede-259afa77ffba"
161
+ },
162
+ "outputs": [
163
+ {
164
+ "output_type": "stream",
165
+ "name": "stdout",
166
+ "text": [
167
+ "Number of samples: 10000\n",
168
+ "Number of unique input tokens: 71\n",
169
+ "Number of unique output tokens: 92\n",
170
+ "Max sequence length for inputs: 15\n",
171
+ "Max sequence length for outputs: 59\n"
172
+ ]
173
+ }
174
+ ],
175
+ "source": [
176
+ "# Vectorize the data.\n",
177
+ "input_texts = []\n",
178
+ "target_texts = []\n",
179
+ "input_characters = set()\n",
180
+ "target_characters = set()\n",
181
+ "with open(data_path, \"r\", encoding=\"utf-8\") as f:\n",
182
+ " lines = f.read().split(\"\\n\")\n",
183
+ "for line in lines[: min(num_samples, len(lines) - 1)]:\n",
184
+ " input_text, target_text, _ = line.split(\"\\t\")\n",
185
+ " # We use \"tab\" as the \"start sequence\" character\n",
186
+ " # for the targets, and \"\\n\" as \"end sequence\" character.\n",
187
+ " target_text = \"\\t\" + target_text + \"\\n\"\n",
188
+ " input_texts.append(input_text)\n",
189
+ " target_texts.append(target_text)\n",
190
+ " for char in input_text:\n",
191
+ " if char not in input_characters:\n",
192
+ " input_characters.add(char)\n",
193
+ " for char in target_text:\n",
194
+ " if char not in target_characters:\n",
195
+ " target_characters.add(char)\n",
196
+ "\n",
197
+ "input_characters = sorted(list(input_characters))\n",
198
+ "target_characters = sorted(list(target_characters))\n",
199
+ "num_encoder_tokens = len(input_characters)\n",
200
+ "num_decoder_tokens = len(target_characters)\n",
201
+ "max_encoder_seq_length = max([len(txt) for txt in input_texts])\n",
202
+ "max_decoder_seq_length = max([len(txt) for txt in target_texts])\n",
203
+ "\n",
204
+ "print(\"Number of samples:\", len(input_texts))\n",
205
+ "print(\"Number of unique input tokens:\", num_encoder_tokens)\n",
206
+ "print(\"Number of unique output tokens:\", num_decoder_tokens)\n",
207
+ "print(\"Max sequence length for inputs:\", max_encoder_seq_length)\n",
208
+ "print(\"Max sequence length for outputs:\", max_decoder_seq_length)\n",
209
+ "\n",
210
+ "input_token_index = dict([(char, i) for i, char in enumerate(input_characters)])\n",
211
+ "target_token_index = dict([(char, i) for i, char in enumerate(target_characters)])\n",
212
+ "\n",
213
+ "encoder_input_data = np.zeros(\n",
214
+ " (len(input_texts), max_encoder_seq_length, num_encoder_tokens), dtype=\"float32\"\n",
215
+ ")\n",
216
+ "decoder_input_data = np.zeros(\n",
217
+ " (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype=\"float32\"\n",
218
+ ")\n",
219
+ "decoder_target_data = np.zeros(\n",
220
+ " (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype=\"float32\"\n",
221
+ ")\n",
222
+ "\n",
223
+ "for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):\n",
224
+ " for t, char in enumerate(input_text):\n",
225
+ " encoder_input_data[i, t, input_token_index[char]] = 1.0\n",
226
+ " encoder_input_data[i, t + 1 :, input_token_index[\" \"]] = 1.0\n",
227
+ " for t, char in enumerate(target_text):\n",
228
+ " # decoder_target_data is ahead of decoder_input_data by one timestep\n",
229
+ " decoder_input_data[i, t, target_token_index[char]] = 1.0\n",
230
+ " if t > 0:\n",
231
+ " # decoder_target_data will be ahead by one timestep\n",
232
+ " # and will not include the start character.\n",
233
+ " decoder_target_data[i, t - 1, target_token_index[char]] = 1.0\n",
234
+ " decoder_input_data[i, t + 1 :, target_token_index[\" \"]] = 1.0\n",
235
+ " decoder_target_data[i, t:, target_token_index[\" \"]] = 1.0\n"
236
+ ]
237
+ },
238
+ {
239
+ "cell_type": "markdown",
240
+ "metadata": {
241
+ "id": "Nmmia38F5J5H"
242
+ },
243
+ "source": [
244
+ "## Build the model\n"
245
+ ]
246
+ },
247
+ {
248
+ "cell_type": "code",
249
+ "execution_count": 5,
250
+ "metadata": {
251
+ "id": "xUBfSVSH5J5H"
252
+ },
253
+ "outputs": [],
254
+ "source": [
255
+ "# Define an input sequence and process it.\n",
256
+ "encoder_inputs = keras.Input(shape=(None, num_encoder_tokens))\n",
257
+ "encoder = keras.layers.LSTM(latent_dim, return_state=True)\n",
258
+ "encoder_outputs, state_h, state_c = encoder(encoder_inputs)\n",
259
+ "\n",
260
+ "# We discard `encoder_outputs` and only keep the states.\n",
261
+ "encoder_states = [state_h, state_c]\n",
262
+ "\n",
263
+ "# Set up the decoder, using `encoder_states` as initial state.\n",
264
+ "decoder_inputs = keras.Input(shape=(None, num_decoder_tokens))\n",
265
+ "\n",
266
+ "# We set up our decoder to return full output sequences,\n",
267
+ "# and to return internal states as well. We don't use the\n",
268
+ "# return states in the training model, but we will use them in inference.\n",
269
+ "decoder_lstm = keras.layers.LSTM(latent_dim, return_sequences=True, return_state=True)\n",
270
+ "decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)\n",
271
+ "decoder_dense = keras.layers.Dense(num_decoder_tokens, activation=\"softmax\")\n",
272
+ "decoder_outputs = decoder_dense(decoder_outputs)\n",
273
+ "\n",
274
+ "# Define the model that will turn\n",
275
+ "# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`\n",
276
+ "model = keras.Model([encoder_inputs, decoder_inputs], decoder_outputs)\n"
277
+ ]
278
+ },
279
+ {
280
+ "cell_type": "markdown",
281
+ "metadata": {
282
+ "id": "MYvCCy4i5J5I"
283
+ },
284
+ "source": [
285
+ "## Train the model\n"
286
+ ]
287
+ },
288
+ {
289
+ "cell_type": "code",
290
+ "execution_count": 6,
291
+ "metadata": {
292
+ "id": "3kgt3bnl5J5I",
293
+ "colab": {
294
+ "base_uri": "https://localhost:8080/"
295
+ },
296
+ "outputId": "f347151f-3666-4f10-8a05-6949a2361301"
297
+ },
298
+ "outputs": [
299
+ {
300
+ "output_type": "stream",
301
+ "name": "stdout",
302
+ "text": [
303
+ "Epoch 1/100\n",
304
+ "125/125 [==============================] - 8s 19ms/step - loss: 1.1334 - accuracy: 0.7368 - val_loss: 1.0400 - val_accuracy: 0.7264\n",
305
+ "Epoch 2/100\n",
306
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.8081 - accuracy: 0.7805 - val_loss: 0.8330 - val_accuracy: 0.7693\n",
307
+ "Epoch 3/100\n",
308
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.6407 - accuracy: 0.8185 - val_loss: 0.6837 - val_accuracy: 0.8008\n",
309
+ "Epoch 4/100\n",
310
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.5614 - accuracy: 0.8366 - val_loss: 0.6254 - val_accuracy: 0.8138\n",
311
+ "Epoch 5/100\n",
312
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.5160 - accuracy: 0.8490 - val_loss: 0.5773 - val_accuracy: 0.8346\n",
313
+ "Epoch 6/100\n",
314
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.4815 - accuracy: 0.8589 - val_loss: 0.5527 - val_accuracy: 0.8383\n",
315
+ "Epoch 7/100\n",
316
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.4538 - accuracy: 0.8659 - val_loss: 0.5317 - val_accuracy: 0.8430\n",
317
+ "Epoch 8/100\n",
318
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.4314 - accuracy: 0.8716 - val_loss: 0.5120 - val_accuracy: 0.8484\n",
319
+ "Epoch 9/100\n",
320
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.4118 - accuracy: 0.8768 - val_loss: 0.5096 - val_accuracy: 0.8493\n",
321
+ "Epoch 10/100\n",
322
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.3945 - accuracy: 0.8818 - val_loss: 0.4892 - val_accuracy: 0.8545\n",
323
+ "Epoch 11/100\n",
324
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.3785 - accuracy: 0.8864 - val_loss: 0.4884 - val_accuracy: 0.8550\n",
325
+ "Epoch 12/100\n",
326
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.3637 - accuracy: 0.8905 - val_loss: 0.4725 - val_accuracy: 0.8597\n",
327
+ "Epoch 13/100\n",
328
+ "125/125 [==============================] - 2s 14ms/step - loss: 0.3498 - accuracy: 0.8946 - val_loss: 0.4674 - val_accuracy: 0.8624\n",
329
+ "Epoch 14/100\n",
330
+ "125/125 [==============================] - 2s 15ms/step - loss: 0.3370 - accuracy: 0.8981 - val_loss: 0.4597 - val_accuracy: 0.8644\n",
331
+ "Epoch 15/100\n",
332
+ "125/125 [==============================] - 2s 14ms/step - loss: 0.3244 - accuracy: 0.9020 - val_loss: 0.4533 - val_accuracy: 0.8661\n",
333
+ "Epoch 16/100\n",
334
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.3124 - accuracy: 0.9056 - val_loss: 0.4569 - val_accuracy: 0.8655\n",
335
+ "Epoch 17/100\n",
336
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.3012 - accuracy: 0.9088 - val_loss: 0.4515 - val_accuracy: 0.8688\n",
337
+ "Epoch 18/100\n",
338
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.2904 - accuracy: 0.9118 - val_loss: 0.4440 - val_accuracy: 0.8704\n",
339
+ "Epoch 19/100\n",
340
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.2803 - accuracy: 0.9154 - val_loss: 0.4473 - val_accuracy: 0.8697\n",
341
+ "Epoch 20/100\n",
342
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.2703 - accuracy: 0.9179 - val_loss: 0.4470 - val_accuracy: 0.8709\n",
343
+ "Epoch 21/100\n",
344
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.2611 - accuracy: 0.9212 - val_loss: 0.4447 - val_accuracy: 0.8725\n",
345
+ "Epoch 22/100\n",
346
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.2519 - accuracy: 0.9235 - val_loss: 0.4457 - val_accuracy: 0.8721\n",
347
+ "Epoch 23/100\n",
348
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.2436 - accuracy: 0.9262 - val_loss: 0.4503 - val_accuracy: 0.8723\n",
349
+ "Epoch 24/100\n",
350
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.2356 - accuracy: 0.9283 - val_loss: 0.4506 - val_accuracy: 0.8732\n",
351
+ "Epoch 25/100\n",
352
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.2275 - accuracy: 0.9309 - val_loss: 0.4531 - val_accuracy: 0.8733\n",
353
+ "Epoch 26/100\n",
354
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.2201 - accuracy: 0.9328 - val_loss: 0.4524 - val_accuracy: 0.8749\n",
355
+ "Epoch 27/100\n",
356
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.2132 - accuracy: 0.9353 - val_loss: 0.4615 - val_accuracy: 0.8736\n",
357
+ "Epoch 28/100\n",
358
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.2064 - accuracy: 0.9370 - val_loss: 0.4609 - val_accuracy: 0.8740\n",
359
+ "Epoch 29/100\n",
360
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1999 - accuracy: 0.9390 - val_loss: 0.4612 - val_accuracy: 0.8750\n",
361
+ "Epoch 30/100\n",
362
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1933 - accuracy: 0.9411 - val_loss: 0.4701 - val_accuracy: 0.8734\n",
363
+ "Epoch 31/100\n",
364
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1877 - accuracy: 0.9427 - val_loss: 0.4718 - val_accuracy: 0.8747\n",
365
+ "Epoch 32/100\n",
366
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1816 - accuracy: 0.9443 - val_loss: 0.4749 - val_accuracy: 0.8747\n",
367
+ "Epoch 33/100\n",
368
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1763 - accuracy: 0.9462 - val_loss: 0.4805 - val_accuracy: 0.8746\n",
369
+ "Epoch 34/100\n",
370
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1711 - accuracy: 0.9477 - val_loss: 0.4855 - val_accuracy: 0.8742\n",
371
+ "Epoch 35/100\n",
372
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1661 - accuracy: 0.9494 - val_loss: 0.4849 - val_accuracy: 0.8745\n",
373
+ "Epoch 36/100\n",
374
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1612 - accuracy: 0.9505 - val_loss: 0.4939 - val_accuracy: 0.8739\n",
375
+ "Epoch 37/100\n",
376
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1566 - accuracy: 0.9518 - val_loss: 0.5005 - val_accuracy: 0.8734\n",
377
+ "Epoch 38/100\n",
378
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1517 - accuracy: 0.9536 - val_loss: 0.5021 - val_accuracy: 0.8748\n",
379
+ "Epoch 39/100\n",
380
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1476 - accuracy: 0.9548 - val_loss: 0.5051 - val_accuracy: 0.8744\n",
381
+ "Epoch 40/100\n",
382
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1434 - accuracy: 0.9561 - val_loss: 0.5081 - val_accuracy: 0.8740\n",
383
+ "Epoch 41/100\n",
384
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1396 - accuracy: 0.9573 - val_loss: 0.5173 - val_accuracy: 0.8745\n",
385
+ "Epoch 42/100\n",
386
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1356 - accuracy: 0.9584 - val_loss: 0.5199 - val_accuracy: 0.8745\n",
387
+ "Epoch 43/100\n",
388
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1318 - accuracy: 0.9591 - val_loss: 0.5236 - val_accuracy: 0.8738\n",
389
+ "Epoch 44/100\n",
390
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1290 - accuracy: 0.9602 - val_loss: 0.5382 - val_accuracy: 0.8731\n",
391
+ "Epoch 45/100\n",
392
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1250 - accuracy: 0.9616 - val_loss: 0.5393 - val_accuracy: 0.8736\n",
393
+ "Epoch 46/100\n",
394
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1218 - accuracy: 0.9624 - val_loss: 0.5392 - val_accuracy: 0.8734\n",
395
+ "Epoch 47/100\n",
396
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1189 - accuracy: 0.9633 - val_loss: 0.5483 - val_accuracy: 0.8742\n",
397
+ "Epoch 48/100\n",
398
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1159 - accuracy: 0.9642 - val_loss: 0.5486 - val_accuracy: 0.8740\n",
399
+ "Epoch 49/100\n",
400
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1127 - accuracy: 0.9652 - val_loss: 0.5606 - val_accuracy: 0.8734\n",
401
+ "Epoch 50/100\n",
402
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1104 - accuracy: 0.9654 - val_loss: 0.5610 - val_accuracy: 0.8738\n",
403
+ "Epoch 51/100\n",
404
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1075 - accuracy: 0.9664 - val_loss: 0.5674 - val_accuracy: 0.8735\n",
405
+ "Epoch 52/100\n",
406
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1050 - accuracy: 0.9673 - val_loss: 0.5702 - val_accuracy: 0.8731\n",
407
+ "Epoch 53/100\n",
408
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1027 - accuracy: 0.9679 - val_loss: 0.5756 - val_accuracy: 0.8732\n",
409
+ "Epoch 54/100\n",
410
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.1004 - accuracy: 0.9684 - val_loss: 0.5783 - val_accuracy: 0.8736\n",
411
+ "Epoch 55/100\n",
412
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0978 - accuracy: 0.9691 - val_loss: 0.5838 - val_accuracy: 0.8729\n",
413
+ "Epoch 56/100\n",
414
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0955 - accuracy: 0.9700 - val_loss: 0.5851 - val_accuracy: 0.8736\n",
415
+ "Epoch 57/100\n",
416
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0934 - accuracy: 0.9703 - val_loss: 0.5969 - val_accuracy: 0.8722\n",
417
+ "Epoch 58/100\n",
418
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0913 - accuracy: 0.9709 - val_loss: 0.6024 - val_accuracy: 0.8723\n",
419
+ "Epoch 59/100\n",
420
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0890 - accuracy: 0.9717 - val_loss: 0.6073 - val_accuracy: 0.8723\n",
421
+ "Epoch 60/100\n",
422
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0873 - accuracy: 0.9720 - val_loss: 0.6113 - val_accuracy: 0.8731\n",
423
+ "Epoch 61/100\n",
424
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0858 - accuracy: 0.9725 - val_loss: 0.6190 - val_accuracy: 0.8726\n",
425
+ "Epoch 62/100\n",
426
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0836 - accuracy: 0.9732 - val_loss: 0.6139 - val_accuracy: 0.8731\n",
427
+ "Epoch 63/100\n",
428
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0819 - accuracy: 0.9737 - val_loss: 0.6242 - val_accuracy: 0.8725\n",
429
+ "Epoch 64/100\n",
430
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0803 - accuracy: 0.9740 - val_loss: 0.6318 - val_accuracy: 0.8709\n",
431
+ "Epoch 65/100\n",
432
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0784 - accuracy: 0.9748 - val_loss: 0.6384 - val_accuracy: 0.8728\n",
433
+ "Epoch 66/100\n",
434
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0768 - accuracy: 0.9749 - val_loss: 0.6392 - val_accuracy: 0.8721\n",
435
+ "Epoch 67/100\n",
436
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0755 - accuracy: 0.9754 - val_loss: 0.6453 - val_accuracy: 0.8718\n",
437
+ "Epoch 68/100\n",
438
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0741 - accuracy: 0.9758 - val_loss: 0.6492 - val_accuracy: 0.8716\n",
439
+ "Epoch 69/100\n",
440
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0720 - accuracy: 0.9765 - val_loss: 0.6505 - val_accuracy: 0.8720\n",
441
+ "Epoch 70/100\n",
442
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0711 - accuracy: 0.9768 - val_loss: 0.6605 - val_accuracy: 0.8720\n",
443
+ "Epoch 71/100\n",
444
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0698 - accuracy: 0.9771 - val_loss: 0.6621 - val_accuracy: 0.8714\n",
445
+ "Epoch 72/100\n",
446
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0685 - accuracy: 0.9774 - val_loss: 0.6656 - val_accuracy: 0.8721\n",
447
+ "Epoch 73/100\n",
448
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0668 - accuracy: 0.9778 - val_loss: 0.6736 - val_accuracy: 0.8715\n",
449
+ "Epoch 74/100\n",
450
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0654 - accuracy: 0.9782 - val_loss: 0.6759 - val_accuracy: 0.8713\n",
451
+ "Epoch 75/100\n",
452
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0642 - accuracy: 0.9786 - val_loss: 0.6830 - val_accuracy: 0.8717\n",
453
+ "Epoch 76/100\n",
454
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0633 - accuracy: 0.9789 - val_loss: 0.6856 - val_accuracy: 0.8705\n",
455
+ "Epoch 77/100\n",
456
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0623 - accuracy: 0.9792 - val_loss: 0.6924 - val_accuracy: 0.8714\n",
457
+ "Epoch 78/100\n",
458
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0608 - accuracy: 0.9795 - val_loss: 0.6958 - val_accuracy: 0.8709\n",
459
+ "Epoch 79/100\n",
460
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0601 - accuracy: 0.9798 - val_loss: 0.7000 - val_accuracy: 0.8712\n",
461
+ "Epoch 80/100\n",
462
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0589 - accuracy: 0.9799 - val_loss: 0.6989 - val_accuracy: 0.8719\n",
463
+ "Epoch 81/100\n",
464
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0577 - accuracy: 0.9804 - val_loss: 0.7021 - val_accuracy: 0.8704\n",
465
+ "Epoch 82/100\n",
466
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0571 - accuracy: 0.9806 - val_loss: 0.7111 - val_accuracy: 0.8705\n",
467
+ "Epoch 83/100\n",
468
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0562 - accuracy: 0.9808 - val_loss: 0.7124 - val_accuracy: 0.8715\n",
469
+ "Epoch 84/100\n",
470
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0549 - accuracy: 0.9812 - val_loss: 0.7160 - val_accuracy: 0.8711\n",
471
+ "Epoch 85/100\n",
472
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0541 - accuracy: 0.9815 - val_loss: 0.7220 - val_accuracy: 0.8707\n",
473
+ "Epoch 86/100\n",
474
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0537 - accuracy: 0.9817 - val_loss: 0.7173 - val_accuracy: 0.8711\n",
475
+ "Epoch 87/100\n",
476
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0521 - accuracy: 0.9820 - val_loss: 0.7312 - val_accuracy: 0.8702\n",
477
+ "Epoch 88/100\n",
478
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0514 - accuracy: 0.9822 - val_loss: 0.7252 - val_accuracy: 0.8718\n",
479
+ "Epoch 89/100\n",
480
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0507 - accuracy: 0.9825 - val_loss: 0.7324 - val_accuracy: 0.8703\n",
481
+ "Epoch 90/100\n",
482
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0503 - accuracy: 0.9824 - val_loss: 0.7375 - val_accuracy: 0.8696\n",
483
+ "Epoch 91/100\n",
484
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0493 - accuracy: 0.9829 - val_loss: 0.7417 - val_accuracy: 0.8699\n",
485
+ "Epoch 92/100\n",
486
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0485 - accuracy: 0.9831 - val_loss: 0.7448 - val_accuracy: 0.8712\n",
487
+ "Epoch 93/100\n",
488
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0484 - accuracy: 0.9831 - val_loss: 0.7448 - val_accuracy: 0.8699\n",
489
+ "Epoch 94/100\n",
490
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0470 - accuracy: 0.9834 - val_loss: 0.7461 - val_accuracy: 0.8709\n",
491
+ "Epoch 95/100\n",
492
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0468 - accuracy: 0.9834 - val_loss: 0.7468 - val_accuracy: 0.8712\n",
493
+ "Epoch 96/100\n",
494
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0463 - accuracy: 0.9838 - val_loss: 0.7601 - val_accuracy: 0.8701\n",
495
+ "Epoch 97/100\n",
496
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0456 - accuracy: 0.9839 - val_loss: 0.7589 - val_accuracy: 0.8702\n",
497
+ "Epoch 98/100\n",
498
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0448 - accuracy: 0.9840 - val_loss: 0.7604 - val_accuracy: 0.8709\n",
499
+ "Epoch 99/100\n",
500
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0445 - accuracy: 0.9840 - val_loss: 0.7593 - val_accuracy: 0.8701\n",
501
+ "Epoch 100/100\n",
502
+ "125/125 [==============================] - 2s 13ms/step - loss: 0.0442 - accuracy: 0.9842 - val_loss: 0.7654 - val_accuracy: 0.8698\n"
503
+ ]
504
+ },
505
+ {
506
+ "output_type": "stream",
507
+ "name": "stderr",
508
+ "text": [
509
+ "WARNING:absl:Found untraced functions such as lstm_cell_layer_call_fn, lstm_cell_layer_call_and_return_conditional_losses, lstm_cell_1_layer_call_fn, lstm_cell_1_layer_call_and_return_conditional_losses, lstm_cell_layer_call_fn while saving (showing 5 of 10). These functions will not be directly callable after loading.\n"
510
+ ]
511
+ },
512
+ {
513
+ "output_type": "stream",
514
+ "name": "stdout",
515
+ "text": [
516
+ "INFO:tensorflow:Assets written to: s2s/assets\n"
517
+ ]
518
+ },
519
+ {
520
+ "output_type": "stream",
521
+ "name": "stderr",
522
+ "text": [
523
+ "INFO:tensorflow:Assets written to: s2s/assets\n",
524
+ "WARNING:absl:<keras.layers.recurrent.LSTMCell object at 0x7f4ff1317d10> has the same name 'LSTMCell' as a built-in Keras object. Consider renaming <class 'keras.layers.recurrent.LSTMCell'> to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n",
525
+ "WARNING:absl:<keras.layers.recurrent.LSTMCell object at 0x7f4fe0236410> has the same name 'LSTMCell' as a built-in Keras object. Consider renaming <class 'keras.layers.recurrent.LSTMCell'> to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n"
526
+ ]
527
+ }
528
+ ],
529
+ "source": [
530
+ "# early_stopping_patience = 10\n",
531
+ "\n",
532
+ "# # Add early stopping\n",
533
+ "# early_stopping = keras.callbacks.EarlyStopping(\n",
534
+ "# monitor=\"val_accuracy\", patience=early_stopping_patience, restore_best_weights=True\n",
535
+ "# )\n",
536
+ "\n",
537
+ "model.compile(\n",
538
+ " optimizer=\"rmsprop\", loss=\"categorical_crossentropy\", metrics=[\"accuracy\"]\n",
539
+ ")\n",
540
+ "model.fit(\n",
541
+ " [encoder_input_data, decoder_input_data],\n",
542
+ " decoder_target_data,\n",
543
+ " batch_size=batch_size,\n",
544
+ " epochs=epochs,\n",
545
+ " validation_split=0.2,\n",
546
+ " # callbacks=[early_stopping]\n",
547
+ ")\n",
548
+ "# Save model\n",
549
+ "model.save(\"s2s\")\n"
550
+ ]
551
+ },
552
+ {
553
+ "cell_type": "markdown",
554
+ "metadata": {
555
+ "id": "HxkS8_Pf5J5I"
556
+ },
557
+ "source": [
558
+ "## Run inference (sampling)\n",
559
+ "\n",
560
+ "1. encode input and retrieve initial decoder state\n",
561
+ "2. run one step of decoder with this initial state\n",
562
+ "and a \"start of sequence\" token as target.\n",
563
+ "Output will be the next target token.\n",
564
+ "3. Repeat with the current target token and current states\n"
565
+ ]
566
+ },
567
+ {
568
+ "cell_type": "code",
569
+ "execution_count": 7,
570
+ "metadata": {
571
+ "id": "-KKcZuAa5J5I"
572
+ },
573
+ "outputs": [],
574
+ "source": [
575
+ "# Define sampling models\n",
576
+ "# Restore the model and construct the encoder and decoder.\n",
577
+ "model = keras.models.load_model(\"s2s\")\n",
578
+ "\n",
579
+ "encoder_inputs = model.input[0] # input_1\n",
580
+ "encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output # lstm_1\n",
581
+ "encoder_states = [state_h_enc, state_c_enc]\n",
582
+ "encoder_model = keras.Model(encoder_inputs, encoder_states)\n",
583
+ "\n",
584
+ "decoder_inputs = model.input[1] # input_2\n",
585
+ "decoder_state_input_h = keras.Input(shape=(latent_dim,))\n",
586
+ "decoder_state_input_c = keras.Input(shape=(latent_dim,))\n",
587
+ "decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]\n",
588
+ "decoder_lstm = model.layers[3]\n",
589
+ "decoder_outputs, state_h_dec, state_c_dec = decoder_lstm(\n",
590
+ " decoder_inputs, initial_state=decoder_states_inputs\n",
591
+ ")\n",
592
+ "decoder_states = [state_h_dec, state_c_dec]\n",
593
+ "decoder_dense = model.layers[4]\n",
594
+ "decoder_outputs = decoder_dense(decoder_outputs)\n",
595
+ "decoder_model = keras.Model(\n",
596
+ " [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states\n",
597
+ ")\n",
598
+ "\n",
599
+ "# Reverse-lookup token index to decode sequences back to\n",
600
+ "# something readable.\n",
601
+ "reverse_input_char_index = dict((i, char) for char, i in input_token_index.items())\n",
602
+ "reverse_target_char_index = dict((i, char) for char, i in target_token_index.items())\n",
603
+ "\n",
604
+ "\n",
605
+ "def decode_sequence(input_seq):\n",
606
+ " # Encode the input as state vectors.\n",
607
+ " states_value = encoder_model.predict(input_seq)\n",
608
+ "\n",
609
+ " # Generate empty target sequence of length 1.\n",
610
+ " target_seq = np.zeros((1, 1, num_decoder_tokens))\n",
611
+ " # Populate the first character of target sequence with the start character.\n",
612
+ " target_seq[0, 0, target_token_index[\"\\t\"]] = 1.0\n",
613
+ "\n",
614
+ " # Sampling loop for a batch of sequences\n",
615
+ " # (to simplify, here we assume a batch of size 1).\n",
616
+ " stop_condition = False\n",
617
+ " decoded_sentence = \"\"\n",
618
+ " while not stop_condition:\n",
619
+ " output_tokens, h, c = decoder_model.predict([target_seq] + states_value)\n",
620
+ "\n",
621
+ " # Sample a token\n",
622
+ " sampled_token_index = np.argmax(output_tokens[0, -1, :])\n",
623
+ " sampled_char = reverse_target_char_index[sampled_token_index]\n",
624
+ " decoded_sentence += sampled_char\n",
625
+ "\n",
626
+ " # Exit condition: either hit max length\n",
627
+ " # or find stop character.\n",
628
+ " if sampled_char == \"\\n\" or len(decoded_sentence) > max_decoder_seq_length:\n",
629
+ " stop_condition = True\n",
630
+ "\n",
631
+ " # Update the target sequence (of length 1).\n",
632
+ " target_seq = np.zeros((1, 1, num_decoder_tokens))\n",
633
+ " target_seq[0, 0, sampled_token_index] = 1.0\n",
634
+ "\n",
635
+ " # Update states\n",
636
+ " states_value = [h, c]\n",
637
+ " return decoded_sentence\n",
638
+ "\n"
639
+ ]
640
+ },
641
+ {
642
+ "cell_type": "markdown",
643
+ "metadata": {
644
+ "id": "pLvBXjXg5J5J"
645
+ },
646
+ "source": [
647
+ "You can now generate decoded sentences as such:\n"
648
+ ]
649
+ },
650
+ {
651
+ "cell_type": "code",
652
+ "execution_count": 8,
653
+ "metadata": {
654
+ "id": "7fG4EDSX5J5J",
655
+ "colab": {
656
+ "base_uri": "https://localhost:8080/"
657
+ },
658
+ "outputId": "84f4486e-fc08-4269-fed2-48628b568240"
659
+ },
660
+ "outputs": [
661
+ {
662
+ "output_type": "stream",
663
+ "name": "stdout",
664
+ "text": [
665
+ "-\n",
666
+ "Input sentence: Go.\n",
667
+ "Decoded sentence: Bouge !\n",
668
+ "\n",
669
+ "-\n",
670
+ "Input sentence: Go.\n",
671
+ "Decoded sentence: Bouge !\n",
672
+ "\n",
673
+ "-\n",
674
+ "Input sentence: Go.\n",
675
+ "Decoded sentence: Bouge !\n",
676
+ "\n",
677
+ "-\n",
678
+ "Input sentence: Hi.\n",
679
+ "Decoded sentence: Salut.\n",
680
+ "\n",
681
+ "-\n",
682
+ "Input sentence: Hi.\n",
683
+ "Decoded sentence: Salut.\n",
684
+ "\n",
685
+ "-\n",
686
+ "Input sentence: Run!\n",
687
+ "Decoded sentence: Courez !\n",
688
+ "\n",
689
+ "-\n",
690
+ "Input sentence: Run!\n",
691
+ "Decoded sentence: Courez !\n",
692
+ "\n",
693
+ "-\n",
694
+ "Input sentence: Run!\n",
695
+ "Decoded sentence: Courez !\n",
696
+ "\n",
697
+ "-\n",
698
+ "Input sentence: Run!\n",
699
+ "Decoded sentence: Courez !\n",
700
+ "\n",
701
+ "-\n",
702
+ "Input sentence: Run!\n",
703
+ "Decoded sentence: Courez !\n",
704
+ "\n",
705
+ "-\n",
706
+ "Input sentence: Run!\n",
707
+ "Decoded sentence: Courez !\n",
708
+ "\n",
709
+ "-\n",
710
+ "Input sentence: Run!\n",
711
+ "Decoded sentence: Courez !\n",
712
+ "\n",
713
+ "-\n",
714
+ "Input sentence: Run!\n",
715
+ "Decoded sentence: Courez !\n",
716
+ "\n",
717
+ "-\n",
718
+ "Input sentence: Run.\n",
719
+ "Decoded sentence: Courez !\n",
720
+ "\n",
721
+ "-\n",
722
+ "Input sentence: Run.\n",
723
+ "Decoded sentence: Courez !\n",
724
+ "\n",
725
+ "-\n",
726
+ "Input sentence: Run.\n",
727
+ "Decoded sentence: Courez !\n",
728
+ "\n",
729
+ "-\n",
730
+ "Input sentence: Run.\n",
731
+ "Decoded sentence: Courez !\n",
732
+ "\n",
733
+ "-\n",
734
+ "Input sentence: Run.\n",
735
+ "Decoded sentence: Courez !\n",
736
+ "\n",
737
+ "-\n",
738
+ "Input sentence: Run.\n",
739
+ "Decoded sentence: Courez !\n",
740
+ "\n",
741
+ "-\n",
742
+ "Input sentence: Run.\n",
743
+ "Decoded sentence: Courez !\n",
744
+ "\n"
745
+ ]
746
+ }
747
+ ],
748
+ "source": [
749
+ "for seq_index in range(20):\n",
750
+ " # Take one sequence (part of the training set)\n",
751
+ " # for trying out decoding.\n",
752
+ " input_seq = encoder_input_data[seq_index : seq_index + 1]\n",
753
+ " decoded_sentence = decode_sequence(input_seq)\n",
754
+ " print(\"-\")\n",
755
+ " print(\"Input sentence:\", input_texts[seq_index])\n",
756
+ " print(\"Decoded sentence:\", decoded_sentence)\n"
757
+ ]
758
+ },
759
+ {
760
+ "cell_type": "code",
761
+ "source": [
762
+ "import json"
763
+ ],
764
+ "metadata": {
765
+ "id": "bqV-cbvJA5hd"
766
+ },
767
+ "execution_count": 10,
768
+ "outputs": []
769
+ },
770
+ {
771
+ "cell_type": "code",
772
+ "source": [
773
+ "with open(\"input_vocab.json\", \"w\", encoding='utf-8') as outfile:\n",
774
+ " json.dump(input_token_index, outfile, ensure_ascii=False)\n",
775
+ "with open(\"target_vocab.json\", \"w\", encoding='utf-8') as outfile:\n",
776
+ " json.dump(target_token_index, outfile, ensure_ascii=False)"
777
+ ],
778
+ "metadata": {
779
+ "id": "jXPS4ycZ9A9o"
780
+ },
781
+ "execution_count": 13,
782
+ "outputs": []
783
+ },
784
+ {
785
+ "cell_type": "code",
786
+ "source": [
787
+ "!pip install huggingface-hub\n",
788
+ "!sudo apt-get install git-lfs\n",
789
+ "!git-lfs install"
790
+ ],
791
+ "metadata": {
792
+ "colab": {
793
+ "base_uri": "https://localhost:8080/"
794
+ },
795
+ "id": "MCQ_ND66BXn9",
796
+ "outputId": "f58a6d0d-2c4b-4fb6-f44e-43b8167a5ded"
797
+ },
798
+ "execution_count": 14,
799
+ "outputs": [
800
+ {
801
+ "output_type": "stream",
802
+ "name": "stdout",
803
+ "text": [
804
+ "Collecting huggingface-hub\n",
805
+ " Downloading huggingface_hub-0.4.0-py3-none-any.whl (67 kB)\n",
806
+ "\u001b[?25l\r\u001b[K |█████ | 10 kB 35.3 MB/s eta 0:00:01\r\u001b[K |█████████▉ | 20 kB 24.7 MB/s eta 0:00:01\r\u001b[K |██████████████▊ | 30 kB 18.8 MB/s eta 0:00:01\r\u001b[K |███████████████████▋ | 40 kB 16.2 MB/s eta 0:00:01\r\u001b[K |████████████████████████▌ | 51 kB 8.3 MB/s eta 0:00:01\r\u001b[K |█████████████████████████████▍ | 61 kB 9.6 MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 67 kB 4.1 MB/s \n",
807
+ "\u001b[?25hRequirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (2.23.0)\n",
808
+ "Requirement already satisfied: pyyaml in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (3.13)\n",
809
+ "Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (3.4.2)\n",
810
+ "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (21.3)\n",
811
+ "Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (4.10.1)\n",
812
+ "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (3.10.0.2)\n",
813
+ "Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (4.62.3)\n",
814
+ "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging>=20.9->huggingface-hub) (3.0.7)\n",
815
+ "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->huggingface-hub) (3.7.0)\n",
816
+ "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->huggingface-hub) (2.10)\n",
817
+ "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->huggingface-hub) (3.0.4)\n",
818
+ "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->huggingface-hub) (2021.10.8)\n",
819
+ "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->huggingface-hub) (1.24.3)\n",
820
+ "Installing collected packages: huggingface-hub\n",
821
+ "Successfully installed huggingface-hub-0.4.0\n",
822
+ "Reading package lists... Done\n",
823
+ "Building dependency tree \n",
824
+ "Reading state information... Done\n",
825
+ "The following packages were automatically installed and are no longer required:\n",
826
+ " cuda-command-line-tools-10-0 cuda-command-line-tools-10-1\n",
827
+ " cuda-command-line-tools-11-0 cuda-compiler-10-0 cuda-compiler-10-1\n",
828
+ " cuda-compiler-11-0 cuda-cuobjdump-10-0 cuda-cuobjdump-10-1\n",
829
+ " cuda-cuobjdump-11-0 cuda-cupti-10-0 cuda-cupti-10-1 cuda-cupti-11-0\n",
830
+ " cuda-cupti-dev-11-0 cuda-documentation-10-0 cuda-documentation-10-1\n",
831
+ " cuda-documentation-11-0 cuda-documentation-11-1 cuda-gdb-10-0 cuda-gdb-10-1\n",
832
+ " cuda-gdb-11-0 cuda-gpu-library-advisor-10-0 cuda-gpu-library-advisor-10-1\n",
833
+ " cuda-libraries-10-0 cuda-libraries-10-1 cuda-libraries-11-0\n",
834
+ " cuda-memcheck-10-0 cuda-memcheck-10-1 cuda-memcheck-11-0 cuda-nsight-10-0\n",
835
+ " cuda-nsight-10-1 cuda-nsight-11-0 cuda-nsight-11-1 cuda-nsight-compute-10-0\n",
836
+ " cuda-nsight-compute-10-1 cuda-nsight-compute-11-0 cuda-nsight-compute-11-1\n",
837
+ " cuda-nsight-systems-10-1 cuda-nsight-systems-11-0 cuda-nsight-systems-11-1\n",
838
+ " cuda-nvcc-10-0 cuda-nvcc-10-1 cuda-nvcc-11-0 cuda-nvdisasm-10-0\n",
839
+ " cuda-nvdisasm-10-1 cuda-nvdisasm-11-0 cuda-nvml-dev-10-0 cuda-nvml-dev-10-1\n",
840
+ " cuda-nvml-dev-11-0 cuda-nvprof-10-0 cuda-nvprof-10-1 cuda-nvprof-11-0\n",
841
+ " cuda-nvprune-10-0 cuda-nvprune-10-1 cuda-nvprune-11-0 cuda-nvtx-10-0\n",
842
+ " cuda-nvtx-10-1 cuda-nvtx-11-0 cuda-nvvp-10-0 cuda-nvvp-10-1 cuda-nvvp-11-0\n",
843
+ " cuda-nvvp-11-1 cuda-samples-10-0 cuda-samples-10-1 cuda-samples-11-0\n",
844
+ " cuda-samples-11-1 cuda-sanitizer-11-0 cuda-sanitizer-api-10-1\n",
845
+ " cuda-toolkit-10-0 cuda-toolkit-10-1 cuda-toolkit-11-0 cuda-toolkit-11-1\n",
846
+ " cuda-tools-10-0 cuda-tools-10-1 cuda-tools-11-0 cuda-tools-11-1\n",
847
+ " cuda-visual-tools-10-0 cuda-visual-tools-10-1 cuda-visual-tools-11-0\n",
848
+ " cuda-visual-tools-11-1 default-jre dkms freeglut3 freeglut3-dev\n",
849
+ " keyboard-configuration libargon2-0 libcap2 libcryptsetup12\n",
850
+ " libdevmapper1.02.1 libfontenc1 libidn11 libip4tc0 libjansson4\n",
851
+ " libnvidia-cfg1-510 libnvidia-common-460 libnvidia-common-510\n",
852
+ " libnvidia-extra-510 libnvidia-fbc1-510 libnvidia-gl-510 libpam-systemd\n",
853
+ " libpolkit-agent-1-0 libpolkit-backend-1-0 libpolkit-gobject-1-0 libxfont2\n",
854
+ " libxi-dev libxkbfile1 libxmu-dev libxmu-headers libxnvctrl0 libxtst6\n",
855
+ " nsight-compute-2020.2.1 nsight-compute-2022.1.0 nsight-systems-2020.3.2\n",
856
+ " nsight-systems-2020.3.4 nsight-systems-2021.5.2 nvidia-dkms-510\n",
857
+ " nvidia-kernel-common-510 nvidia-kernel-source-510 nvidia-modprobe\n",
858
+ " nvidia-settings openjdk-11-jre policykit-1 policykit-1-gnome python3-xkit\n",
859
+ " screen-resolution-extra systemd systemd-sysv udev x11-xkb-utils\n",
860
+ " xserver-common xserver-xorg-core-hwe-18.04 xserver-xorg-video-nvidia-510\n",
861
+ "Use 'sudo apt autoremove' to remove them.\n",
862
+ "The following NEW packages will be installed:\n",
863
+ " git-lfs\n",
864
+ "0 upgraded, 1 newly installed, 0 to remove and 39 not upgraded.\n",
865
+ "Need to get 2,129 kB of archives.\n",
866
+ "After this operation, 7,662 kB of additional disk space will be used.\n",
867
+ "Get:1 http://archive.ubuntu.com/ubuntu bionic/universe amd64 git-lfs amd64 2.3.4-1 [2,129 kB]\n",
868
+ "Fetched 2,129 kB in 1s (1,551 kB/s)\n",
869
+ "debconf: unable to initialize frontend: Dialog\n",
870
+ "debconf: (No usable dialog-like program is installed, so the dialog based frontend cannot be used. at /usr/share/perl5/Debconf/FrontEnd/Dialog.pm line 76, <> line 1.)\n",
871
+ "debconf: falling back to frontend: Readline\n",
872
+ "debconf: unable to initialize frontend: Readline\n",
873
+ "debconf: (This frontend requires a controlling tty.)\n",
874
+ "debconf: falling back to frontend: Teletype\n",
875
+ "dpkg-preconfigure: unable to re-open stdin: \n",
876
+ "Selecting previously unselected package git-lfs.\n",
877
+ "(Reading database ... 155113 files and directories currently installed.)\n",
878
+ "Preparing to unpack .../git-lfs_2.3.4-1_amd64.deb ...\n",
879
+ "Unpacking git-lfs (2.3.4-1) ...\n",
880
+ "Setting up git-lfs (2.3.4-1) ...\n",
881
+ "Processing triggers for man-db (2.8.3-2ubuntu0.1) ...\n",
882
+ "Error: Failed to call git rev-parse --git-dir --show-toplevel: \"fatal: not a git repository (or any of the parent directories): .git\\n\"\n",
883
+ "Git LFS initialized.\n"
884
+ ]
885
+ }
886
+ ]
887
+ },
888
+ {
889
+ "cell_type": "code",
890
+ "source": [
891
+ "!huggingface-cli login"
892
+ ],
893
+ "metadata": {
894
+ "colab": {
895
+ "base_uri": "https://localhost:8080/"
896
+ },
897
+ "id": "vr7EzjdvBzHT",
898
+ "outputId": "69fa8334-c203-4000-d970-1a8b8f9f1ba6"
899
+ },
900
+ "execution_count": 15,
901
+ "outputs": [
902
+ {
903
+ "output_type": "stream",
904
+ "name": "stdout",
905
+ "text": [
906
+ "\n",
907
+ " _| _| _| _| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _|_|_|_| _|_| _|_|_| _|_|_|_|\n",
908
+ " _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|\n",
909
+ " _|_|_|_| _| _| _| _|_| _| _|_| _| _| _| _| _| _|_| _|_|_| _|_|_|_| _| _|_|_|\n",
910
+ " _| _| _| _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|\n",
911
+ " _| _| _|_| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _| _| _| _|_|_| _|_|_|_|\n",
912
+ "\n",
913
+ " To login, `huggingface_hub` now requires a token generated from https://huggingface.co/settings/token.\n",
914
+ " (Deprecated, will be removed in v0.3.0) To login with username and password instead, interrupt with Ctrl+C.\n",
915
+ " \n",
916
+ "Token: \n",
917
+ "Login successful\n",
918
+ "Your token has been saved to /root/.huggingface/token\n",
919
+ "\u001b[1m\u001b[31mAuthenticated through git-credential store but this isn't the helper defined on your machine.\n",
920
+ "You might have to re-authenticate when pushing to the Hugging Face Hub. Run the following command in your terminal in case you want to set this credential helper as the default\n",
921
+ "\n",
922
+ "git config --global credential.helper store\u001b[0m\n"
923
+ ]
924
+ }
925
+ ]
926
+ },
927
+ {
928
+ "cell_type": "code",
929
+ "source": [
930
+ "from huggingface_hub.keras_mixin import push_to_hub_keras\n",
931
+ "push_to_hub_keras(model = model, repo_url = \"https://huggingface.co/keras-io/char-lstm-seq2seq\", organization = \"keras-io\")"
932
+ ],
933
+ "metadata": {
934
+ "colab": {
935
+ "base_uri": "https://localhost:8080/",
936
+ "height": 345,
937
+ "referenced_widgets": [
938
+ "0873642bfadd4c37b54e92dac1de35bf",
939
+ "042ecadcff7b47fbb32069cdf1064d09",
940
+ "942b7ed2e1f0404fb5f44b266a16d0cd",
941
+ "8dcb06d036d64bad92a2117db8874bd9",
942
+ "1ef6e4d8d6ff4f3cad20a518f8f4f2cb",
943
+ "3679ebef4abc417ebb06c2f7d45bbf4b",
944
+ "60a1fc7920304a5e82499d9268e6e1a8",
945
+ "93e1a0fe3609475da590bd08fae66fa7",
946
+ "3e3abf2a02724044af294b759243bbff",
947
+ "173ac791952944b9a758a5ba47245e66",
948
+ "34e8e3a5d2a0423cab28196710bdc684",
949
+ "48c696f7e40c4ee5a41ff4e823e88e8d",
950
+ "0fec85cbc02f43568b13b6b128513849",
951
+ "0910616a312041489a80714c88219bd9",
952
+ "734f0340dd2b4cd594290e0457a5df0b",
953
+ "9462930017094b64bddaf19b5f66aa58",
954
+ "63b105a140524e7abed1c7a2eee86d70",
955
+ "ead2f71ec2034c70a970a72f18973607",
956
+ "8b814bfa9fac40f1a24d1442f95d7ae8",
957
+ "82502d93f92d4369ac159a5498c62015",
958
+ "277a1e05f0dc4afb839468c0b5c08bd7",
959
+ "0b0c60f854f54830adfdf0464701460c"
960
+ ]
961
+ },
962
+ "id": "ZhPSjrEAB26W",
963
+ "outputId": "1e454a43-108a-450a-9e4e-3fa327b23e26"
964
+ },
965
+ "execution_count": 16,
966
+ "outputs": [
967
+ {
968
+ "output_type": "stream",
969
+ "name": "stderr",
970
+ "text": [
971
+ "Cloning https://huggingface.co/keras-io/char-lstm-seq2seq into local empty directory.\n",
972
+ "WARNING:huggingface_hub.repository:Cloning https://huggingface.co/keras-io/char-lstm-seq2seq into local empty directory.\n",
973
+ "WARNING:absl:Found untraced functions such as lstm_cell_2_layer_call_fn, lstm_cell_2_layer_call_and_return_conditional_losses, lstm_cell_3_layer_call_fn, lstm_cell_3_layer_call_and_return_conditional_losses, lstm_cell_2_layer_call_fn while saving (showing 5 of 10). These functions will not be directly callable after loading.\n"
974
+ ]
975
+ },
976
+ {
977
+ "output_type": "stream",
978
+ "name": "stdout",
979
+ "text": [
980
+ "INFO:tensorflow:Assets written to: char-lstm-seq2seq/assets\n"
981
+ ]
982
+ },
983
+ {
984
+ "output_type": "stream",
985
+ "name": "stderr",
986
+ "text": [
987
+ "INFO:tensorflow:Assets written to: char-lstm-seq2seq/assets\n",
988
+ "WARNING:absl:<keras.layers.recurrent.LSTMCell object at 0x7f4f5d43eed0> has the same name 'LSTMCell' as a built-in Keras object. Consider renaming <class 'keras.layers.recurrent.LSTMCell'> to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n",
989
+ "WARNING:absl:<keras.layers.recurrent.LSTMCell object at 0x7f4f5d676190> has the same name 'LSTMCell' as a built-in Keras object. Consider renaming <class 'keras.layers.recurrent.LSTMCell'> to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n"
990
+ ]
991
+ },
992
+ {
993
+ "output_type": "display_data",
994
+ "data": {
995
+ "application/vnd.jupyter.widget-view+json": {
996
+ "model_id": "0873642bfadd4c37b54e92dac1de35bf",
997
+ "version_minor": 0,
998
+ "version_major": 2
999
+ },
1000
+ "text/plain": [
1001
+ "Upload file saved_model.pb: 0%| | 3.39k/1.38M [00:00<?, ?B/s]"
1002
+ ]
1003
+ },
1004
+ "metadata": {}
1005
+ },
1006
+ {
1007
+ "output_type": "display_data",
1008
+ "data": {
1009
+ "application/vnd.jupyter.widget-view+json": {
1010
+ "model_id": "48c696f7e40c4ee5a41ff4e823e88e8d",
1011
+ "version_minor": 0,
1012
+ "version_major": 2
1013
+ },
1014
+ "text/plain": [
1015
+ "Upload file keras_metadata.pb: 22%|##2 | 3.39k/15.3k [00:00<?, ?B/s]"
1016
+ ]
1017
+ },
1018
+ "metadata": {}
1019
+ },
1020
+ {
1021
+ "output_type": "stream",
1022
+ "name": "stderr",
1023
+ "text": [
1024
+ "To https://huggingface.co/keras-io/char-lstm-seq2seq\n",
1025
+ " df51a58..69c5bbb main -> main\n",
1026
+ "\n",
1027
+ "WARNING:huggingface_hub.repository:To https://huggingface.co/keras-io/char-lstm-seq2seq\n",
1028
+ " df51a58..69c5bbb main -> main\n",
1029
+ "\n"
1030
+ ]
1031
+ },
1032
+ {
1033
+ "output_type": "execute_result",
1034
+ "data": {
1035
+ "application/vnd.google.colaboratory.intrinsic+json": {
1036
+ "type": "string"
1037
+ },
1038
+ "text/plain": [
1039
+ "'https://huggingface.co/keras-io/char-lstm-seq2seq/commit/69c5bbba7cfcad71d97557b045f3592ad5b26c39'"
1040
+ ]
1041
+ },
1042
+ "metadata": {},
1043
+ "execution_count": 16
1044
+ }
1045
+ ]
1046
+ },
1047
+ {
1048
+ "cell_type": "code",
1049
+ "source": [
1050
+ ""
1051
+ ],
1052
+ "metadata": {
1053
+ "id": "2TbeYdeuCJ5_"
1054
+ },
1055
+ "execution_count": null,
1056
+ "outputs": []
1057
+ }
1058
+ ],
1059
+ "metadata": {
1060
+ "colab": {
1061
+ "collapsed_sections": [],
1062
+ "name": "lstm_seq2seq",
1063
+ "provenance": [],
1064
+ "machine_shape": "hm"
1065
+ },
1066
+ "kernelspec": {
1067
+ "display_name": "Python 3",
1068
+ "language": "python",
1069
+ "name": "python3"
1070
+ },
1071
+ "language_info": {
1072
+ "codemirror_mode": {
1073
+ "name": "ipython",
1074
+ "version": 3
1075
+ },
1076
+ "file_extension": ".py",
1077
+ "mimetype": "text/x-python",
1078
+ "name": "python",
1079
+ "nbconvert_exporter": "python",
1080
+ "pygments_lexer": "ipython3",
1081
+ "version": "3.7.0"
1082
+ },
1083
+ "accelerator": "GPU",
1084
+ "widgets": {
1085
+ "application/vnd.jupyter.widget-state+json": {
1086
+ "0873642bfadd4c37b54e92dac1de35bf": {
1087
+ "model_module": "@jupyter-widgets/controls",
1088
+ "model_name": "HBoxModel",
1089
+ "model_module_version": "1.5.0",
1090
+ "state": {
1091
+ "_view_name": "HBoxView",
1092
+ "_dom_classes": [],
1093
+ "_model_name": "HBoxModel",
1094
+ "_view_module": "@jupyter-widgets/controls",
1095
+ "_model_module_version": "1.5.0",
1096
+ "_view_count": null,
1097
+ "_view_module_version": "1.5.0",
1098
+ "box_style": "",
1099
+ "layout": "IPY_MODEL_042ecadcff7b47fbb32069cdf1064d09",
1100
+ "_model_module": "@jupyter-widgets/controls",
1101
+ "children": [
1102
+ "IPY_MODEL_942b7ed2e1f0404fb5f44b266a16d0cd",
1103
+ "IPY_MODEL_8dcb06d036d64bad92a2117db8874bd9",
1104
+ "IPY_MODEL_1ef6e4d8d6ff4f3cad20a518f8f4f2cb"
1105
+ ]
1106
+ }
1107
+ },
1108
+ "042ecadcff7b47fbb32069cdf1064d09": {
1109
+ "model_module": "@jupyter-widgets/base",
1110
+ "model_name": "LayoutModel",
1111
+ "model_module_version": "1.2.0",
1112
+ "state": {
1113
+ "_view_name": "LayoutView",
1114
+ "grid_template_rows": null,
1115
+ "right": null,
1116
+ "justify_content": null,
1117
+ "_view_module": "@jupyter-widgets/base",
1118
+ "overflow": null,
1119
+ "_model_module_version": "1.2.0",
1120
+ "_view_count": null,
1121
+ "flex_flow": null,
1122
+ "width": null,
1123
+ "min_width": null,
1124
+ "border": null,
1125
+ "align_items": null,
1126
+ "bottom": null,
1127
+ "_model_module": "@jupyter-widgets/base",
1128
+ "top": null,
1129
+ "grid_column": null,
1130
+ "overflow_y": null,
1131
+ "overflow_x": null,
1132
+ "grid_auto_flow": null,
1133
+ "grid_area": null,
1134
+ "grid_template_columns": null,
1135
+ "flex": null,
1136
+ "_model_name": "LayoutModel",
1137
+ "justify_items": null,
1138
+ "grid_row": null,
1139
+ "max_height": null,
1140
+ "align_content": null,
1141
+ "visibility": null,
1142
+ "align_self": null,
1143
+ "height": null,
1144
+ "min_height": null,
1145
+ "padding": null,
1146
+ "grid_auto_rows": null,
1147
+ "grid_gap": null,
1148
+ "max_width": null,
1149
+ "order": null,
1150
+ "_view_module_version": "1.2.0",
1151
+ "grid_template_areas": null,
1152
+ "object_position": null,
1153
+ "object_fit": null,
1154
+ "grid_auto_columns": null,
1155
+ "margin": null,
1156
+ "display": null,
1157
+ "left": null
1158
+ }
1159
+ },
1160
+ "942b7ed2e1f0404fb5f44b266a16d0cd": {
1161
+ "model_module": "@jupyter-widgets/controls",
1162
+ "model_name": "HTMLModel",
1163
+ "model_module_version": "1.5.0",
1164
+ "state": {
1165
+ "_view_name": "HTMLView",
1166
+ "style": "IPY_MODEL_3679ebef4abc417ebb06c2f7d45bbf4b",
1167
+ "_dom_classes": [],
1168
+ "description": "",
1169
+ "_model_name": "HTMLModel",
1170
+ "placeholder": "​",
1171
+ "_view_module": "@jupyter-widgets/controls",
1172
+ "_model_module_version": "1.5.0",
1173
+ "value": "Upload file saved_model.pb: 100%",
1174
+ "_view_count": null,
1175
+ "_view_module_version": "1.5.0",
1176
+ "description_tooltip": null,
1177
+ "_model_module": "@jupyter-widgets/controls",
1178
+ "layout": "IPY_MODEL_60a1fc7920304a5e82499d9268e6e1a8"
1179
+ }
1180
+ },
1181
+ "8dcb06d036d64bad92a2117db8874bd9": {
1182
+ "model_module": "@jupyter-widgets/controls",
1183
+ "model_name": "FloatProgressModel",
1184
+ "model_module_version": "1.5.0",
1185
+ "state": {
1186
+ "_view_name": "ProgressView",
1187
+ "style": "IPY_MODEL_93e1a0fe3609475da590bd08fae66fa7",
1188
+ "_dom_classes": [],
1189
+ "description": "",
1190
+ "_model_name": "FloatProgressModel",
1191
+ "bar_style": "success",
1192
+ "max": 1444428,
1193
+ "_view_module": "@jupyter-widgets/controls",
1194
+ "_model_module_version": "1.5.0",
1195
+ "value": 1444428,
1196
+ "_view_count": null,
1197
+ "_view_module_version": "1.5.0",
1198
+ "orientation": "horizontal",
1199
+ "min": 0,
1200
+ "description_tooltip": null,
1201
+ "_model_module": "@jupyter-widgets/controls",
1202
+ "layout": "IPY_MODEL_3e3abf2a02724044af294b759243bbff"
1203
+ }
1204
+ },
1205
+ "1ef6e4d8d6ff4f3cad20a518f8f4f2cb": {
1206
+ "model_module": "@jupyter-widgets/controls",
1207
+ "model_name": "HTMLModel",
1208
+ "model_module_version": "1.5.0",
1209
+ "state": {
1210
+ "_view_name": "HTMLView",
1211
+ "style": "IPY_MODEL_173ac791952944b9a758a5ba47245e66",
1212
+ "_dom_classes": [],
1213
+ "description": "",
1214
+ "_model_name": "HTMLModel",
1215
+ "placeholder": "​",
1216
+ "_view_module": "@jupyter-widgets/controls",
1217
+ "_model_module_version": "1.5.0",
1218
+ "value": " 1.38M/1.38M [00:06&lt;00:00, 188kB/s]",
1219
+ "_view_count": null,
1220
+ "_view_module_version": "1.5.0",
1221
+ "description_tooltip": null,
1222
+ "_model_module": "@jupyter-widgets/controls",
1223
+ "layout": "IPY_MODEL_34e8e3a5d2a0423cab28196710bdc684"
1224
+ }
1225
+ },
1226
+ "3679ebef4abc417ebb06c2f7d45bbf4b": {
1227
+ "model_module": "@jupyter-widgets/controls",
1228
+ "model_name": "DescriptionStyleModel",
1229
+ "model_module_version": "1.5.0",
1230
+ "state": {
1231
+ "_view_name": "StyleView",
1232
+ "_model_name": "DescriptionStyleModel",
1233
+ "description_width": "",
1234
+ "_view_module": "@jupyter-widgets/base",
1235
+ "_model_module_version": "1.5.0",
1236
+ "_view_count": null,
1237
+ "_view_module_version": "1.2.0",
1238
+ "_model_module": "@jupyter-widgets/controls"
1239
+ }
1240
+ },
1241
+ "60a1fc7920304a5e82499d9268e6e1a8": {
1242
+ "model_module": "@jupyter-widgets/base",
1243
+ "model_name": "LayoutModel",
1244
+ "model_module_version": "1.2.0",
1245
+ "state": {
1246
+ "_view_name": "LayoutView",
1247
+ "grid_template_rows": null,
1248
+ "right": null,
1249
+ "justify_content": null,
1250
+ "_view_module": "@jupyter-widgets/base",
1251
+ "overflow": null,
1252
+ "_model_module_version": "1.2.0",
1253
+ "_view_count": null,
1254
+ "flex_flow": null,
1255
+ "width": null,
1256
+ "min_width": null,
1257
+ "border": null,
1258
+ "align_items": null,
1259
+ "bottom": null,
1260
+ "_model_module": "@jupyter-widgets/base",
1261
+ "top": null,
1262
+ "grid_column": null,
1263
+ "overflow_y": null,
1264
+ "overflow_x": null,
1265
+ "grid_auto_flow": null,
1266
+ "grid_area": null,
1267
+ "grid_template_columns": null,
1268
+ "flex": null,
1269
+ "_model_name": "LayoutModel",
1270
+ "justify_items": null,
1271
+ "grid_row": null,
1272
+ "max_height": null,
1273
+ "align_content": null,
1274
+ "visibility": null,
1275
+ "align_self": null,
1276
+ "height": null,
1277
+ "min_height": null,
1278
+ "padding": null,
1279
+ "grid_auto_rows": null,
1280
+ "grid_gap": null,
1281
+ "max_width": null,
1282
+ "order": null,
1283
+ "_view_module_version": "1.2.0",
1284
+ "grid_template_areas": null,
1285
+ "object_position": null,
1286
+ "object_fit": null,
1287
+ "grid_auto_columns": null,
1288
+ "margin": null,
1289
+ "display": null,
1290
+ "left": null
1291
+ }
1292
+ },
1293
+ "93e1a0fe3609475da590bd08fae66fa7": {
1294
+ "model_module": "@jupyter-widgets/controls",
1295
+ "model_name": "ProgressStyleModel",
1296
+ "model_module_version": "1.5.0",
1297
+ "state": {
1298
+ "_view_name": "StyleView",
1299
+ "_model_name": "ProgressStyleModel",
1300
+ "description_width": "",
1301
+ "_view_module": "@jupyter-widgets/base",
1302
+ "_model_module_version": "1.5.0",
1303
+ "_view_count": null,
1304
+ "_view_module_version": "1.2.0",
1305
+ "bar_color": null,
1306
+ "_model_module": "@jupyter-widgets/controls"
1307
+ }
1308
+ },
1309
+ "3e3abf2a02724044af294b759243bbff": {
1310
+ "model_module": "@jupyter-widgets/base",
1311
+ "model_name": "LayoutModel",
1312
+ "model_module_version": "1.2.0",
1313
+ "state": {
1314
+ "_view_name": "LayoutView",
1315
+ "grid_template_rows": null,
1316
+ "right": null,
1317
+ "justify_content": null,
1318
+ "_view_module": "@jupyter-widgets/base",
1319
+ "overflow": null,
1320
+ "_model_module_version": "1.2.0",
1321
+ "_view_count": null,
1322
+ "flex_flow": null,
1323
+ "width": null,
1324
+ "min_width": null,
1325
+ "border": null,
1326
+ "align_items": null,
1327
+ "bottom": null,
1328
+ "_model_module": "@jupyter-widgets/base",
1329
+ "top": null,
1330
+ "grid_column": null,
1331
+ "overflow_y": null,
1332
+ "overflow_x": null,
1333
+ "grid_auto_flow": null,
1334
+ "grid_area": null,
1335
+ "grid_template_columns": null,
1336
+ "flex": null,
1337
+ "_model_name": "LayoutModel",
1338
+ "justify_items": null,
1339
+ "grid_row": null,
1340
+ "max_height": null,
1341
+ "align_content": null,
1342
+ "visibility": null,
1343
+ "align_self": null,
1344
+ "height": null,
1345
+ "min_height": null,
1346
+ "padding": null,
1347
+ "grid_auto_rows": null,
1348
+ "grid_gap": null,
1349
+ "max_width": null,
1350
+ "order": null,
1351
+ "_view_module_version": "1.2.0",
1352
+ "grid_template_areas": null,
1353
+ "object_position": null,
1354
+ "object_fit": null,
1355
+ "grid_auto_columns": null,
1356
+ "margin": null,
1357
+ "display": null,
1358
+ "left": null
1359
+ }
1360
+ },
1361
+ "173ac791952944b9a758a5ba47245e66": {
1362
+ "model_module": "@jupyter-widgets/controls",
1363
+ "model_name": "DescriptionStyleModel",
1364
+ "model_module_version": "1.5.0",
1365
+ "state": {
1366
+ "_view_name": "StyleView",
1367
+ "_model_name": "DescriptionStyleModel",
1368
+ "description_width": "",
1369
+ "_view_module": "@jupyter-widgets/base",
1370
+ "_model_module_version": "1.5.0",
1371
+ "_view_count": null,
1372
+ "_view_module_version": "1.2.0",
1373
+ "_model_module": "@jupyter-widgets/controls"
1374
+ }
1375
+ },
1376
+ "34e8e3a5d2a0423cab28196710bdc684": {
1377
+ "model_module": "@jupyter-widgets/base",
1378
+ "model_name": "LayoutModel",
1379
+ "model_module_version": "1.2.0",
1380
+ "state": {
1381
+ "_view_name": "LayoutView",
1382
+ "grid_template_rows": null,
1383
+ "right": null,
1384
+ "justify_content": null,
1385
+ "_view_module": "@jupyter-widgets/base",
1386
+ "overflow": null,
1387
+ "_model_module_version": "1.2.0",
1388
+ "_view_count": null,
1389
+ "flex_flow": null,
1390
+ "width": null,
1391
+ "min_width": null,
1392
+ "border": null,
1393
+ "align_items": null,
1394
+ "bottom": null,
1395
+ "_model_module": "@jupyter-widgets/base",
1396
+ "top": null,
1397
+ "grid_column": null,
1398
+ "overflow_y": null,
1399
+ "overflow_x": null,
1400
+ "grid_auto_flow": null,
1401
+ "grid_area": null,
1402
+ "grid_template_columns": null,
1403
+ "flex": null,
1404
+ "_model_name": "LayoutModel",
1405
+ "justify_items": null,
1406
+ "grid_row": null,
1407
+ "max_height": null,
1408
+ "align_content": null,
1409
+ "visibility": null,
1410
+ "align_self": null,
1411
+ "height": null,
1412
+ "min_height": null,
1413
+ "padding": null,
1414
+ "grid_auto_rows": null,
1415
+ "grid_gap": null,
1416
+ "max_width": null,
1417
+ "order": null,
1418
+ "_view_module_version": "1.2.0",
1419
+ "grid_template_areas": null,
1420
+ "object_position": null,
1421
+ "object_fit": null,
1422
+ "grid_auto_columns": null,
1423
+ "margin": null,
1424
+ "display": null,
1425
+ "left": null
1426
+ }
1427
+ },
1428
+ "48c696f7e40c4ee5a41ff4e823e88e8d": {
1429
+ "model_module": "@jupyter-widgets/controls",
1430
+ "model_name": "HBoxModel",
1431
+ "model_module_version": "1.5.0",
1432
+ "state": {
1433
+ "_view_name": "HBoxView",
1434
+ "_dom_classes": [],
1435
+ "_model_name": "HBoxModel",
1436
+ "_view_module": "@jupyter-widgets/controls",
1437
+ "_model_module_version": "1.5.0",
1438
+ "_view_count": null,
1439
+ "_view_module_version": "1.5.0",
1440
+ "box_style": "",
1441
+ "layout": "IPY_MODEL_0fec85cbc02f43568b13b6b128513849",
1442
+ "_model_module": "@jupyter-widgets/controls",
1443
+ "children": [
1444
+ "IPY_MODEL_0910616a312041489a80714c88219bd9",
1445
+ "IPY_MODEL_734f0340dd2b4cd594290e0457a5df0b",
1446
+ "IPY_MODEL_9462930017094b64bddaf19b5f66aa58"
1447
+ ]
1448
+ }
1449
+ },
1450
+ "0fec85cbc02f43568b13b6b128513849": {
1451
+ "model_module": "@jupyter-widgets/base",
1452
+ "model_name": "LayoutModel",
1453
+ "model_module_version": "1.2.0",
1454
+ "state": {
1455
+ "_view_name": "LayoutView",
1456
+ "grid_template_rows": null,
1457
+ "right": null,
1458
+ "justify_content": null,
1459
+ "_view_module": "@jupyter-widgets/base",
1460
+ "overflow": null,
1461
+ "_model_module_version": "1.2.0",
1462
+ "_view_count": null,
1463
+ "flex_flow": null,
1464
+ "width": null,
1465
+ "min_width": null,
1466
+ "border": null,
1467
+ "align_items": null,
1468
+ "bottom": null,
1469
+ "_model_module": "@jupyter-widgets/base",
1470
+ "top": null,
1471
+ "grid_column": null,
1472
+ "overflow_y": null,
1473
+ "overflow_x": null,
1474
+ "grid_auto_flow": null,
1475
+ "grid_area": null,
1476
+ "grid_template_columns": null,
1477
+ "flex": null,
1478
+ "_model_name": "LayoutModel",
1479
+ "justify_items": null,
1480
+ "grid_row": null,
1481
+ "max_height": null,
1482
+ "align_content": null,
1483
+ "visibility": null,
1484
+ "align_self": null,
1485
+ "height": null,
1486
+ "min_height": null,
1487
+ "padding": null,
1488
+ "grid_auto_rows": null,
1489
+ "grid_gap": null,
1490
+ "max_width": null,
1491
+ "order": null,
1492
+ "_view_module_version": "1.2.0",
1493
+ "grid_template_areas": null,
1494
+ "object_position": null,
1495
+ "object_fit": null,
1496
+ "grid_auto_columns": null,
1497
+ "margin": null,
1498
+ "display": null,
1499
+ "left": null
1500
+ }
1501
+ },
1502
+ "0910616a312041489a80714c88219bd9": {
1503
+ "model_module": "@jupyter-widgets/controls",
1504
+ "model_name": "HTMLModel",
1505
+ "model_module_version": "1.5.0",
1506
+ "state": {
1507
+ "_view_name": "HTMLView",
1508
+ "style": "IPY_MODEL_63b105a140524e7abed1c7a2eee86d70",
1509
+ "_dom_classes": [],
1510
+ "description": "",
1511
+ "_model_name": "HTMLModel",
1512
+ "placeholder": "​",
1513
+ "_view_module": "@jupyter-widgets/controls",
1514
+ "_model_module_version": "1.5.0",
1515
+ "value": "Upload file keras_metadata.pb: 100%",
1516
+ "_view_count": null,
1517
+ "_view_module_version": "1.5.0",
1518
+ "description_tooltip": null,
1519
+ "_model_module": "@jupyter-widgets/controls",
1520
+ "layout": "IPY_MODEL_ead2f71ec2034c70a970a72f18973607"
1521
+ }
1522
+ },
1523
+ "734f0340dd2b4cd594290e0457a5df0b": {
1524
+ "model_module": "@jupyter-widgets/controls",
1525
+ "model_name": "FloatProgressModel",
1526
+ "model_module_version": "1.5.0",
1527
+ "state": {
1528
+ "_view_name": "ProgressView",
1529
+ "style": "IPY_MODEL_8b814bfa9fac40f1a24d1442f95d7ae8",
1530
+ "_dom_classes": [],
1531
+ "description": "",
1532
+ "_model_name": "FloatProgressModel",
1533
+ "bar_style": "success",
1534
+ "max": 15672,
1535
+ "_view_module": "@jupyter-widgets/controls",
1536
+ "_model_module_version": "1.5.0",
1537
+ "value": 15672,
1538
+ "_view_count": null,
1539
+ "_view_module_version": "1.5.0",
1540
+ "orientation": "horizontal",
1541
+ "min": 0,
1542
+ "description_tooltip": null,
1543
+ "_model_module": "@jupyter-widgets/controls",
1544
+ "layout": "IPY_MODEL_82502d93f92d4369ac159a5498c62015"
1545
+ }
1546
+ },
1547
+ "9462930017094b64bddaf19b5f66aa58": {
1548
+ "model_module": "@jupyter-widgets/controls",
1549
+ "model_name": "HTMLModel",
1550
+ "model_module_version": "1.5.0",
1551
+ "state": {
1552
+ "_view_name": "HTMLView",
1553
+ "style": "IPY_MODEL_277a1e05f0dc4afb839468c0b5c08bd7",
1554
+ "_dom_classes": [],
1555
+ "description": "",
1556
+ "_model_name": "HTMLModel",
1557
+ "placeholder": "​",
1558
+ "_view_module": "@jupyter-widgets/controls",
1559
+ "_model_module_version": "1.5.0",
1560
+ "value": " 15.3k/15.3k [00:06&lt;00:00, 2.02kB/s]",
1561
+ "_view_count": null,
1562
+ "_view_module_version": "1.5.0",
1563
+ "description_tooltip": null,
1564
+ "_model_module": "@jupyter-widgets/controls",
1565
+ "layout": "IPY_MODEL_0b0c60f854f54830adfdf0464701460c"
1566
+ }
1567
+ },
1568
+ "63b105a140524e7abed1c7a2eee86d70": {
1569
+ "model_module": "@jupyter-widgets/controls",
1570
+ "model_name": "DescriptionStyleModel",
1571
+ "model_module_version": "1.5.0",
1572
+ "state": {
1573
+ "_view_name": "StyleView",
1574
+ "_model_name": "DescriptionStyleModel",
1575
+ "description_width": "",
1576
+ "_view_module": "@jupyter-widgets/base",
1577
+ "_model_module_version": "1.5.0",
1578
+ "_view_count": null,
1579
+ "_view_module_version": "1.2.0",
1580
+ "_model_module": "@jupyter-widgets/controls"
1581
+ }
1582
+ },
1583
+ "ead2f71ec2034c70a970a72f18973607": {
1584
+ "model_module": "@jupyter-widgets/base",
1585
+ "model_name": "LayoutModel",
1586
+ "model_module_version": "1.2.0",
1587
+ "state": {
1588
+ "_view_name": "LayoutView",
1589
+ "grid_template_rows": null,
1590
+ "right": null,
1591
+ "justify_content": null,
1592
+ "_view_module": "@jupyter-widgets/base",
1593
+ "overflow": null,
1594
+ "_model_module_version": "1.2.0",
1595
+ "_view_count": null,
1596
+ "flex_flow": null,
1597
+ "width": null,
1598
+ "min_width": null,
1599
+ "border": null,
1600
+ "align_items": null,
1601
+ "bottom": null,
1602
+ "_model_module": "@jupyter-widgets/base",
1603
+ "top": null,
1604
+ "grid_column": null,
1605
+ "overflow_y": null,
1606
+ "overflow_x": null,
1607
+ "grid_auto_flow": null,
1608
+ "grid_area": null,
1609
+ "grid_template_columns": null,
1610
+ "flex": null,
1611
+ "_model_name": "LayoutModel",
1612
+ "justify_items": null,
1613
+ "grid_row": null,
1614
+ "max_height": null,
1615
+ "align_content": null,
1616
+ "visibility": null,
1617
+ "align_self": null,
1618
+ "height": null,
1619
+ "min_height": null,
1620
+ "padding": null,
1621
+ "grid_auto_rows": null,
1622
+ "grid_gap": null,
1623
+ "max_width": null,
1624
+ "order": null,
1625
+ "_view_module_version": "1.2.0",
1626
+ "grid_template_areas": null,
1627
+ "object_position": null,
1628
+ "object_fit": null,
1629
+ "grid_auto_columns": null,
1630
+ "margin": null,
1631
+ "display": null,
1632
+ "left": null
1633
+ }
1634
+ },
1635
+ "8b814bfa9fac40f1a24d1442f95d7ae8": {
1636
+ "model_module": "@jupyter-widgets/controls",
1637
+ "model_name": "ProgressStyleModel",
1638
+ "model_module_version": "1.5.0",
1639
+ "state": {
1640
+ "_view_name": "StyleView",
1641
+ "_model_name": "ProgressStyleModel",
1642
+ "description_width": "",
1643
+ "_view_module": "@jupyter-widgets/base",
1644
+ "_model_module_version": "1.5.0",
1645
+ "_view_count": null,
1646
+ "_view_module_version": "1.2.0",
1647
+ "bar_color": null,
1648
+ "_model_module": "@jupyter-widgets/controls"
1649
+ }
1650
+ },
1651
+ "82502d93f92d4369ac159a5498c62015": {
1652
+ "model_module": "@jupyter-widgets/base",
1653
+ "model_name": "LayoutModel",
1654
+ "model_module_version": "1.2.0",
1655
+ "state": {
1656
+ "_view_name": "LayoutView",
1657
+ "grid_template_rows": null,
1658
+ "right": null,
1659
+ "justify_content": null,
1660
+ "_view_module": "@jupyter-widgets/base",
1661
+ "overflow": null,
1662
+ "_model_module_version": "1.2.0",
1663
+ "_view_count": null,
1664
+ "flex_flow": null,
1665
+ "width": null,
1666
+ "min_width": null,
1667
+ "border": null,
1668
+ "align_items": null,
1669
+ "bottom": null,
1670
+ "_model_module": "@jupyter-widgets/base",
1671
+ "top": null,
1672
+ "grid_column": null,
1673
+ "overflow_y": null,
1674
+ "overflow_x": null,
1675
+ "grid_auto_flow": null,
1676
+ "grid_area": null,
1677
+ "grid_template_columns": null,
1678
+ "flex": null,
1679
+ "_model_name": "LayoutModel",
1680
+ "justify_items": null,
1681
+ "grid_row": null,
1682
+ "max_height": null,
1683
+ "align_content": null,
1684
+ "visibility": null,
1685
+ "align_self": null,
1686
+ "height": null,
1687
+ "min_height": null,
1688
+ "padding": null,
1689
+ "grid_auto_rows": null,
1690
+ "grid_gap": null,
1691
+ "max_width": null,
1692
+ "order": null,
1693
+ "_view_module_version": "1.2.0",
1694
+ "grid_template_areas": null,
1695
+ "object_position": null,
1696
+ "object_fit": null,
1697
+ "grid_auto_columns": null,
1698
+ "margin": null,
1699
+ "display": null,
1700
+ "left": null
1701
+ }
1702
+ },
1703
+ "277a1e05f0dc4afb839468c0b5c08bd7": {
1704
+ "model_module": "@jupyter-widgets/controls",
1705
+ "model_name": "DescriptionStyleModel",
1706
+ "model_module_version": "1.5.0",
1707
+ "state": {
1708
+ "_view_name": "StyleView",
1709
+ "_model_name": "DescriptionStyleModel",
1710
+ "description_width": "",
1711
+ "_view_module": "@jupyter-widgets/base",
1712
+ "_model_module_version": "1.5.0",
1713
+ "_view_count": null,
1714
+ "_view_module_version": "1.2.0",
1715
+ "_model_module": "@jupyter-widgets/controls"
1716
+ }
1717
+ },
1718
+ "0b0c60f854f54830adfdf0464701460c": {
1719
+ "model_module": "@jupyter-widgets/base",
1720
+ "model_name": "LayoutModel",
1721
+ "model_module_version": "1.2.0",
1722
+ "state": {
1723
+ "_view_name": "LayoutView",
1724
+ "grid_template_rows": null,
1725
+ "right": null,
1726
+ "justify_content": null,
1727
+ "_view_module": "@jupyter-widgets/base",
1728
+ "overflow": null,
1729
+ "_model_module_version": "1.2.0",
1730
+ "_view_count": null,
1731
+ "flex_flow": null,
1732
+ "width": null,
1733
+ "min_width": null,
1734
+ "border": null,
1735
+ "align_items": null,
1736
+ "bottom": null,
1737
+ "_model_module": "@jupyter-widgets/base",
1738
+ "top": null,
1739
+ "grid_column": null,
1740
+ "overflow_y": null,
1741
+ "overflow_x": null,
1742
+ "grid_auto_flow": null,
1743
+ "grid_area": null,
1744
+ "grid_template_columns": null,
1745
+ "flex": null,
1746
+ "_model_name": "LayoutModel",
1747
+ "justify_items": null,
1748
+ "grid_row": null,
1749
+ "max_height": null,
1750
+ "align_content": null,
1751
+ "visibility": null,
1752
+ "align_self": null,
1753
+ "height": null,
1754
+ "min_height": null,
1755
+ "padding": null,
1756
+ "grid_auto_rows": null,
1757
+ "grid_gap": null,
1758
+ "max_width": null,
1759
+ "order": null,
1760
+ "_view_module_version": "1.2.0",
1761
+ "grid_template_areas": null,
1762
+ "object_position": null,
1763
+ "object_fit": null,
1764
+ "grid_auto_columns": null,
1765
+ "margin": null,
1766
+ "display": null,
1767
+ "left": null
1768
+ }
1769
+ }
1770
+ }
1771
+ }
1772
+ },
1773
+ "nbformat": 4,
1774
+ "nbformat_minor": 0
1775
+ }