{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "VRNFFldCsmkI" }, "source": [ "# CycleGAN\n", "\n", "**Author:** [A_K_Nain](https://twitter.com/A_K_Nain)
\n", "**Date created:** 2020/08/12
\n", "**Last modified:** 2020/08/12
\n", "**Description:** Implementation of CycleGAN." ] }, { "cell_type": "markdown", "metadata": { "id": "jVwB_Ph0smkK" }, "source": [ "## CycleGAN\n", "\n", "CycleGAN is a model that aims to solve the image-to-image translation\n", "problem. The goal of the image-to-image translation problem is to learn the\n", "mapping between an input image and an output image using a training set of\n", "aligned image pairs. However, obtaining paired examples isn't always feasible.\n", "CycleGAN tries to learn this mapping without requiring paired input-output images,\n", "using cycle-consistent adversarial networks.\n", "\n", "- [Paper](https://arxiv.org/pdf/1703.10593.pdf)\n", "- [Original implementation](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix)" ] }, { "cell_type": "markdown", "metadata": { "id": "bOpg5meHsmkL" }, "source": [ "## Setup" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "v46aKoQZtNcW" }, "outputs": [], "source": [ "%%capture\n", "!pip install tensorflow_addons tensorflow_datasets" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "BgLCBj6asmkL" }, "outputs": [], "source": [ "import os\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "import tensorflow as tf\n", "from tensorflow import keras\n", "from tensorflow.keras import layers\n", "\n", "import tensorflow_addons as tfa\n", "import tensorflow_datasets as tfds\n", "\n", "tfds.disable_progress_bar()\n", "autotune = tf.data.AUTOTUNE\n" ] }, { "cell_type": "markdown", "metadata": { "id": "pa0OuHEhsmkM" }, "source": [ "## Prepare the dataset\n", "\n", "In this example, we will be using the\n", "[horse to zebra](https://www.tensorflow.org/datasets/catalog/cycle_gan#cycle_ganhorse2zebra)\n", "dataset." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ejy7DeR-smkM" }, "outputs": [], "source": [ "# Load the horse-zebra dataset using tensorflow-datasets.\n", "dataset, _ = tfds.load(\"cycle_gan/horse2zebra\", with_info=True, as_supervised=True)\n", "train_horses, train_zebras = dataset[\"trainA\"], dataset[\"trainB\"]\n", "test_horses, test_zebras = dataset[\"testA\"], dataset[\"testB\"]\n", "\n", "# Define the standard image size.\n", "orig_img_size = (286, 286)\n", "# Size of the random crops to be used during training.\n", "input_img_size = (256, 256, 3)\n", "# Weights initializer for the layers.\n", "kernel_init = keras.initializers.RandomNormal(mean=0.0, stddev=0.02)\n", "# Gamma initializer for instance normalization.\n", "gamma_init = keras.initializers.RandomNormal(mean=0.0, stddev=0.02)\n", "\n", "buffer_size = 256\n", "batch_size = 1\n", "\n", "\n", "def normalize_img(img):\n", " img = tf.cast(img, dtype=tf.float32)\n", " # Map values in the range [-1, 1]\n", " return (img / 127.5) - 1.0\n", "\n", "\n", "def preprocess_train_image(img, label):\n", " # Random flip\n", " img = tf.image.random_flip_left_right(img)\n", " # Resize to the original size first\n", " img = tf.image.resize(img, [*orig_img_size])\n", " # Random crop to 256X256\n", " img = tf.image.random_crop(img, size=[*input_img_size])\n", " # Normalize the pixel values in the range [-1, 1]\n", " img = normalize_img(img)\n", " return img\n", "\n", "\n", "def preprocess_test_image(img, label):\n", " # Only resizing and normalization for the test images.\n", " img = tf.image.resize(img, [input_img_size[0], input_img_size[1]])\n", " img = normalize_img(img)\n", " return img\n" ] }, { "cell_type": "markdown", "metadata": { "id": "ZjNdjd9PsmkN" }, "source": [ "## Create `Dataset` objects" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "bFRrL22WsmkO" }, "outputs": [], "source": [ "\n", "# Apply the preprocessing operations to the training data\n", "train_horses = (\n", " train_horses.map(preprocess_train_image, num_parallel_calls=autotune)\n", " .cache()\n", " .shuffle(buffer_size)\n", " .batch(batch_size)\n", ")\n", "train_zebras = (\n", " train_zebras.map(preprocess_train_image, num_parallel_calls=autotune)\n", " .cache()\n", " .shuffle(buffer_size)\n", " .batch(batch_size)\n", ")\n", "\n", "# Apply the preprocessing operations to the test data\n", "test_horses = (\n", " test_horses.map(preprocess_test_image, num_parallel_calls=autotune)\n", " .cache()\n", " .shuffle(buffer_size)\n", " .batch(batch_size)\n", ")\n", "test_zebras = (\n", " test_zebras.map(preprocess_test_image, num_parallel_calls=autotune)\n", " .cache()\n", " .shuffle(buffer_size)\n", " .batch(batch_size)\n", ")\n" ] }, { "cell_type": "markdown", "metadata": { "id": "cqnAgImAsmkO" }, "source": [ "## Visualize some samples" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "vs6JE_nksmkP" }, "outputs": [], "source": [ "\n", "_, ax = plt.subplots(4, 2, figsize=(10, 15))\n", "for i, samples in enumerate(zip(train_horses.take(4), train_zebras.take(4))):\n", " horse = (((samples[0][0] * 127.5) + 127.5).numpy()).astype(np.uint8)\n", " zebra = (((samples[1][0] * 127.5) + 127.5).numpy()).astype(np.uint8)\n", " ax[i, 0].imshow(horse)\n", " ax[i, 1].imshow(zebra)\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": { "id": "m7Wlng40smkP" }, "source": [ "## Building blocks used in the CycleGAN generators and discriminators" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "gZgsli56smkQ" }, "outputs": [], "source": [ "\n", "class ReflectionPadding2D(layers.Layer):\n", " \"\"\"Implements Reflection Padding as a layer.\n", "\n", " Args:\n", " padding(tuple): Amount of padding for the\n", " spatial dimensions.\n", "\n", " Returns:\n", " A padded tensor with the same type as the input tensor.\n", " \"\"\"\n", "\n", " def __init__(self, padding=(1, 1), **kwargs):\n", " self.padding = tuple(padding)\n", " super(ReflectionPadding2D, self).__init__(**kwargs)\n", "\n", " def call(self, input_tensor, mask=None):\n", " padding_width, padding_height = self.padding\n", " padding_tensor = [\n", " [0, 0],\n", " [padding_height, padding_height],\n", " [padding_width, padding_width],\n", " [0, 0],\n", " ]\n", " return tf.pad(input_tensor, padding_tensor, mode=\"REFLECT\")\n", "\n", "\n", "def residual_block(\n", " x,\n", " activation,\n", " kernel_initializer=kernel_init,\n", " kernel_size=(3, 3),\n", " strides=(1, 1),\n", " padding=\"valid\",\n", " gamma_initializer=gamma_init,\n", " use_bias=False,\n", "):\n", " dim = x.shape[-1]\n", " input_tensor = x\n", "\n", " x = ReflectionPadding2D()(input_tensor)\n", " x = layers.Conv2D(\n", " dim,\n", " kernel_size,\n", " strides=strides,\n", " kernel_initializer=kernel_initializer,\n", " padding=padding,\n", " use_bias=use_bias,\n", " )(x)\n", " x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x)\n", " x = activation(x)\n", "\n", " x = ReflectionPadding2D()(x)\n", " x = layers.Conv2D(\n", " dim,\n", " kernel_size,\n", " strides=strides,\n", " kernel_initializer=kernel_initializer,\n", " padding=padding,\n", " use_bias=use_bias,\n", " )(x)\n", " x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x)\n", " x = layers.add([input_tensor, x])\n", " return x\n", "\n", "\n", "def downsample(\n", " x,\n", " filters,\n", " activation,\n", " kernel_initializer=kernel_init,\n", " kernel_size=(3, 3),\n", " strides=(2, 2),\n", " padding=\"same\",\n", " gamma_initializer=gamma_init,\n", " use_bias=False,\n", "):\n", " x = layers.Conv2D(\n", " filters,\n", " kernel_size,\n", " strides=strides,\n", " kernel_initializer=kernel_initializer,\n", " padding=padding,\n", " use_bias=use_bias,\n", " )(x)\n", " x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x)\n", " if activation:\n", " x = activation(x)\n", " return x\n", "\n", "\n", "def upsample(\n", " x,\n", " filters,\n", " activation,\n", " kernel_size=(3, 3),\n", " strides=(2, 2),\n", " padding=\"same\",\n", " kernel_initializer=kernel_init,\n", " gamma_initializer=gamma_init,\n", " use_bias=False,\n", "):\n", " x = layers.Conv2DTranspose(\n", " filters,\n", " kernel_size,\n", " strides=strides,\n", " padding=padding,\n", " kernel_initializer=kernel_initializer,\n", " use_bias=use_bias,\n", " )(x)\n", " x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x)\n", " if activation:\n", " x = activation(x)\n", " return x\n" ] }, { "cell_type": "markdown", "metadata": { "id": "fXdgpeLGsmkQ" }, "source": [ "## Build the generators\n", "\n", "The generator consists of downsampling blocks: nine residual blocks\n", "and upsampling blocks. The structure of the generator is the following:\n", "\n", "```\n", "c7s1-64 ==> Conv block with `relu` activation, filter size of 7\n", "d128 ====|\n", " |-> 2 downsampling blocks\n", "d256 ====|\n", "R256 ====|\n", "R256 |\n", "R256 |\n", "R256 |\n", "R256 |-> 9 residual blocks\n", "R256 |\n", "R256 |\n", "R256 |\n", "R256 ====|\n", "u128 ====|\n", " |-> 2 upsampling blocks\n", "u64 ====|\n", "c7s1-3 => Last conv block with `tanh` activation, filter size of 7.\n", "```" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "G67IU1n_smkR" }, "outputs": [], "source": [ "\n", "def get_resnet_generator(\n", " filters=64,\n", " num_downsampling_blocks=2,\n", " num_residual_blocks=9,\n", " num_upsample_blocks=2,\n", " gamma_initializer=gamma_init,\n", " name=None,\n", "):\n", " img_input = layers.Input(shape=input_img_size, name=name + \"_img_input\")\n", " x = ReflectionPadding2D(padding=(3, 3))(img_input)\n", " x = layers.Conv2D(filters, (7, 7), kernel_initializer=kernel_init, use_bias=False)(\n", " x\n", " )\n", " x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x)\n", " x = layers.Activation(\"relu\")(x)\n", "\n", " # Downsampling\n", " for _ in range(num_downsampling_blocks):\n", " filters *= 2\n", " x = downsample(x, filters=filters, activation=layers.Activation(\"relu\"))\n", "\n", " # Residual blocks\n", " for _ in range(num_residual_blocks):\n", " x = residual_block(x, activation=layers.Activation(\"relu\"))\n", "\n", " # Upsampling\n", " for _ in range(num_upsample_blocks):\n", " filters //= 2\n", " x = upsample(x, filters, activation=layers.Activation(\"relu\"))\n", "\n", " # Final block\n", " x = ReflectionPadding2D(padding=(3, 3))(x)\n", " x = layers.Conv2D(3, (7, 7), padding=\"valid\")(x)\n", " x = layers.Activation(\"tanh\")(x)\n", "\n", " model = keras.models.Model(img_input, x, name=name)\n", " return model\n" ] }, { "cell_type": "markdown", "metadata": { "id": "72QKJBi8smkR" }, "source": [ "## Build the discriminators\n", "\n", "The discriminators implement the following architecture:\n", "`C64->C128->C256->C512`" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "IWRDg78-smkR" }, "outputs": [], "source": [ "\n", "def get_discriminator(\n", " filters=64, kernel_initializer=kernel_init, num_downsampling=3, name=None\n", "):\n", " img_input = layers.Input(shape=input_img_size, name=name + \"_img_input\")\n", " x = layers.Conv2D(\n", " filters,\n", " (4, 4),\n", " strides=(2, 2),\n", " padding=\"same\",\n", " kernel_initializer=kernel_initializer,\n", " )(img_input)\n", " x = layers.LeakyReLU(0.2)(x)\n", "\n", " num_filters = filters\n", " for num_downsample_block in range(3):\n", " num_filters *= 2\n", " if num_downsample_block < 2:\n", " x = downsample(\n", " x,\n", " filters=num_filters,\n", " activation=layers.LeakyReLU(0.2),\n", " kernel_size=(4, 4),\n", " strides=(2, 2),\n", " )\n", " else:\n", " x = downsample(\n", " x,\n", " filters=num_filters,\n", " activation=layers.LeakyReLU(0.2),\n", " kernel_size=(4, 4),\n", " strides=(1, 1),\n", " )\n", "\n", " x = layers.Conv2D(\n", " 1, (4, 4), strides=(1, 1), padding=\"same\", kernel_initializer=kernel_initializer\n", " )(x)\n", "\n", " model = keras.models.Model(inputs=img_input, outputs=x, name=name)\n", " return model\n", "\n", "\n", "# Get the generators\n", "gen_G = get_resnet_generator(name=\"generator_G\")\n", "gen_F = get_resnet_generator(name=\"generator_F\")\n", "\n", "# Get the discriminators\n", "disc_X = get_discriminator(name=\"discriminator_X\")\n", "disc_Y = get_discriminator(name=\"discriminator_Y\")\n" ] }, { "cell_type": "markdown", "metadata": { "id": "aX9EntYasmkS" }, "source": [ "## Build the CycleGAN model\n", "\n", "We will override the `train_step()` method of the `Model` class\n", "for training via `fit()`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "n8gUdq8gsmkS" }, "outputs": [], "source": [ "\n", "class CycleGan(keras.Model):\n", " def __init__(\n", " self,\n", " generator_G,\n", " generator_F,\n", " discriminator_X,\n", " discriminator_Y,\n", " lambda_cycle=10.0,\n", " lambda_identity=0.5,\n", " ):\n", " super(CycleGan, self).__init__()\n", " self.gen_G = generator_G\n", " self.gen_F = generator_F\n", " self.disc_X = discriminator_X\n", " self.disc_Y = discriminator_Y\n", " self.lambda_cycle = lambda_cycle\n", " self.lambda_identity = lambda_identity\n", "\n", " def compile(\n", " self,\n", " gen_G_optimizer,\n", " gen_F_optimizer,\n", " disc_X_optimizer,\n", " disc_Y_optimizer,\n", " gen_loss_fn,\n", " disc_loss_fn,\n", " ):\n", " super(CycleGan, self).compile()\n", " self.gen_G_optimizer = gen_G_optimizer\n", " self.gen_F_optimizer = gen_F_optimizer\n", " self.disc_X_optimizer = disc_X_optimizer\n", " self.disc_Y_optimizer = disc_Y_optimizer\n", " self.generator_loss_fn = gen_loss_fn\n", " self.discriminator_loss_fn = disc_loss_fn\n", " self.cycle_loss_fn = keras.losses.MeanAbsoluteError()\n", " self.identity_loss_fn = keras.losses.MeanAbsoluteError()\n", "\n", " def train_step(self, batch_data):\n", " # x is Horse and y is zebra\n", " real_x, real_y = batch_data\n", "\n", " # For CycleGAN, we need to calculate different\n", " # kinds of losses for the generators and discriminators.\n", " # We will perform the following steps here:\n", " #\n", " # 1. Pass real images through the generators and get the generated images\n", " # 2. Pass the generated images back to the generators to check if we\n", " # we can predict the original image from the generated image.\n", " # 3. Do an identity mapping of the real images using the generators.\n", " # 4. Pass the generated images in 1) to the corresponding discriminators.\n", " # 5. Calculate the generators total loss (adverserial + cycle + identity)\n", " # 6. Calculate the discriminators loss\n", " # 7. Update the weights of the generators\n", " # 8. Update the weights of the discriminators\n", " # 9. Return the losses in a dictionary\n", "\n", " with tf.GradientTape(persistent=True) as tape:\n", " # Horse to fake zebra\n", " fake_y = self.gen_G(real_x, training=True)\n", " # Zebra to fake horse -> y2x\n", " fake_x = self.gen_F(real_y, training=True)\n", "\n", " # Cycle (Horse to fake zebra to fake horse): x -> y -> x\n", " cycled_x = self.gen_F(fake_y, training=True)\n", " # Cycle (Zebra to fake horse to fake zebra) y -> x -> y\n", " cycled_y = self.gen_G(fake_x, training=True)\n", "\n", " # Identity mapping\n", " same_x = self.gen_F(real_x, training=True)\n", " same_y = self.gen_G(real_y, training=True)\n", "\n", " # Discriminator output\n", " disc_real_x = self.disc_X(real_x, training=True)\n", " disc_fake_x = self.disc_X(fake_x, training=True)\n", "\n", " disc_real_y = self.disc_Y(real_y, training=True)\n", " disc_fake_y = self.disc_Y(fake_y, training=True)\n", "\n", " # Generator adverserial loss\n", " gen_G_loss = self.generator_loss_fn(disc_fake_y)\n", " gen_F_loss = self.generator_loss_fn(disc_fake_x)\n", "\n", " # Generator cycle loss\n", " cycle_loss_G = self.cycle_loss_fn(real_y, cycled_y) * self.lambda_cycle\n", " cycle_loss_F = self.cycle_loss_fn(real_x, cycled_x) * self.lambda_cycle\n", "\n", " # Generator identity loss\n", " id_loss_G = (\n", " self.identity_loss_fn(real_y, same_y)\n", " * self.lambda_cycle\n", " * self.lambda_identity\n", " )\n", " id_loss_F = (\n", " self.identity_loss_fn(real_x, same_x)\n", " * self.lambda_cycle\n", " * self.lambda_identity\n", " )\n", "\n", " # Total generator loss\n", " total_loss_G = gen_G_loss + cycle_loss_G + id_loss_G\n", " total_loss_F = gen_F_loss + cycle_loss_F + id_loss_F\n", "\n", " # Discriminator loss\n", " disc_X_loss = self.discriminator_loss_fn(disc_real_x, disc_fake_x)\n", " disc_Y_loss = self.discriminator_loss_fn(disc_real_y, disc_fake_y)\n", "\n", " # Get the gradients for the generators\n", " grads_G = tape.gradient(total_loss_G, self.gen_G.trainable_variables)\n", " grads_F = tape.gradient(total_loss_F, self.gen_F.trainable_variables)\n", "\n", " # Get the gradients for the discriminators\n", " disc_X_grads = tape.gradient(disc_X_loss, self.disc_X.trainable_variables)\n", " disc_Y_grads = tape.gradient(disc_Y_loss, self.disc_Y.trainable_variables)\n", "\n", " # Update the weights of the generators\n", " self.gen_G_optimizer.apply_gradients(\n", " zip(grads_G, self.gen_G.trainable_variables)\n", " )\n", " self.gen_F_optimizer.apply_gradients(\n", " zip(grads_F, self.gen_F.trainable_variables)\n", " )\n", "\n", " # Update the weights of the discriminators\n", " self.disc_X_optimizer.apply_gradients(\n", " zip(disc_X_grads, self.disc_X.trainable_variables)\n", " )\n", " self.disc_Y_optimizer.apply_gradients(\n", " zip(disc_Y_grads, self.disc_Y.trainable_variables)\n", " )\n", "\n", " return {\n", " \"G_loss\": total_loss_G,\n", " \"F_loss\": total_loss_F,\n", " \"D_X_loss\": disc_X_loss,\n", " \"D_Y_loss\": disc_Y_loss,\n", " }\n" ] }, { "cell_type": "markdown", "metadata": { "id": "S5tmLYeBsmkT" }, "source": [ "## Create a callback that periodically saves generated images" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "t9EqZ5uBsmkV" }, "outputs": [], "source": [ "\n", "class GANMonitor(keras.callbacks.Callback):\n", " \"\"\"A callback to generate and save images after each epoch\"\"\"\n", "\n", " def __init__(self, num_img=4):\n", " self.num_img = num_img\n", "\n", " def on_epoch_end(self, epoch, logs=None):\n", " _, ax = plt.subplots(4, 2, figsize=(12, 12))\n", " for i, img in enumerate(test_horses.take(self.num_img)):\n", " prediction = self.model.gen_G(img)[0].numpy()\n", " prediction = (prediction * 127.5 + 127.5).astype(np.uint8)\n", " img = (img[0] * 127.5 + 127.5).numpy().astype(np.uint8)\n", "\n", " ax[i, 0].imshow(img)\n", " ax[i, 1].imshow(prediction)\n", " ax[i, 0].set_title(\"Input image\")\n", " ax[i, 1].set_title(\"Translated image\")\n", " ax[i, 0].axis(\"off\")\n", " ax[i, 1].axis(\"off\")\n", "\n", " prediction = keras.preprocessing.image.array_to_img(prediction)\n", " prediction.save(\n", " \"generated_img_{i}_{epoch}.png\".format(i=i, epoch=epoch + 1)\n", " )\n", " plt.show()\n", " plt.close()\n" ] }, { "cell_type": "markdown", "metadata": { "id": "ARuT30Z0smkV" }, "source": [ "## Train the end-to-end model" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "5I6aQE7SsmkV" }, "outputs": [], "source": [ "\n", "# Loss function for evaluating adversarial loss\n", "adv_loss_fn = keras.losses.MeanSquaredError()\n", "\n", "# Define the loss function for the generators\n", "def generator_loss_fn(fake):\n", " fake_loss = adv_loss_fn(tf.ones_like(fake), fake)\n", " return fake_loss\n", "\n", "\n", "# Define the loss function for the discriminators\n", "def discriminator_loss_fn(real, fake):\n", " real_loss = adv_loss_fn(tf.ones_like(real), real)\n", " fake_loss = adv_loss_fn(tf.zeros_like(fake), fake)\n", " return (real_loss + fake_loss) * 0.5\n", "\n", "\n", "# Create cycle gan model\n", "cycle_gan_model = CycleGan(\n", " generator_G=gen_G, generator_F=gen_F, discriminator_X=disc_X, discriminator_Y=disc_Y\n", ")\n", "\n", "# Compile the model\n", "cycle_gan_model.compile(\n", " gen_G_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),\n", " gen_F_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),\n", " disc_X_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),\n", " disc_Y_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),\n", " gen_loss_fn=generator_loss_fn,\n", " disc_loss_fn=discriminator_loss_fn,\n", ")\n", "# Callbacks\n", "plotter = GANMonitor()\n", "checkpoint_filepath = \"./model_checkpoints/cyclegan_checkpoints.{epoch:03d}\"\n", "model_checkpoint_callback = keras.callbacks.ModelCheckpoint(\n", " filepath=checkpoint_filepath\n", ")\n", "\n", "# Here we will train the model for just one epoch as each epoch takes around\n", "# 7 minutes on a single P100 backed machine.\n", "cycle_gan_model.fit(\n", " tf.data.Dataset.zip((train_horses, train_zebras)),\n", " epochs=1,\n", " callbacks=[plotter, model_checkpoint_callback],\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "2PsVmLKAsmkW" }, "source": [ "Test the performance of the model." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "aHEDqhP1smkW" }, "outputs": [], "source": [ "\n", "# This model was trained for 90 epochs. We will be loading those weights\n", "# here. Once the weights are loaded, we will take a few samples from the test\n", "# data and check the model's performance." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "O-dNKakasmkW", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "b988e2a2-2eb3-4e60-dfd1-3f6b5670aadb" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " % Total % Received % Xferd Average Speed Time Time Time Current\n", " Dload Upload Total Spent Left Speed\n", "100 660 100 660 0 0 1880 0 --:--:-- --:--:-- --:--:-- 1880\n", "100 273M 100 273M 0 0 6400k 0 0:00:43 0:00:43 --:--:-- 9.8M\n" ] } ], "source": [ "!curl -LO https://github.com/AakashKumarNain/CycleGAN_TF2/releases/download/v1.0/saved_checkpoints.zip\n", "!unzip -qq saved_checkpoints.zip" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "HSYC0yy_smkW" }, "outputs": [], "source": [ "\n", "# Load the checkpoints\n", "weight_file = \"./saved_checkpoints/cyclegan_checkpoints.090\"\n", "cycle_gan_model.load_weights(weight_file).expect_partial()\n", "print(\"Weights loaded successfully\")\n", "\n", "_, ax = plt.subplots(4, 2, figsize=(10, 15))\n", "for i, img in enumerate(test_horses.take(4)):\n", " prediction = cycle_gan_model.gen_G(img, training=False)[0].numpy()\n", " prediction = (prediction * 127.5 + 127.5).astype(np.uint8)\n", " img = (img[0] * 127.5 + 127.5).numpy().astype(np.uint8)\n", "\n", " ax[i, 0].imshow(img)\n", " ax[i, 1].imshow(prediction)\n", " ax[i, 0].set_title(\"Input image\")\n", " ax[i, 0].set_title(\"Input image\")\n", " ax[i, 1].set_title(\"Translated image\")\n", " ax[i, 0].axis(\"off\")\n", " ax[i, 1].axis(\"off\")\n", "\n", " prediction = keras.preprocessing.image.array_to_img(prediction)\n", " prediction.save(\"predicted_img_{i}.png\".format(i=i))\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "dqGvqRtn3FCK" }, "outputs": [], "source": [ "%%capture\n", "!pip install huggingface-hub\n", "!sudo apt-get install git-lfs\n", "!git-lfs install" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "dGDIa_LR0tMe", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "3fb3f53b-1834-45e7-9915-d14d83241565" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", " _| _| _| _| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _|_|_|_| _|_| _|_|_| _|_|_|_|\n", " _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|\n", " _|_|_|_| _| _| _| _|_| _| _|_| _| _| _| _| _| _|_| _|_|_| _|_|_|_| _| _|_|_|\n", " _| _| _| _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|\n", " _| _| _|_| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _| _| _| _|_|_| _|_|_|_|\n", "\n", " To login, `huggingface_hub` now requires a token generated from https://huggingface.co./settings/token.\n", " (Deprecated, will be removed in v0.3.0) To login with username and password instead, interrupt with Ctrl+C.\n", " \n", "Token: \n", "Login successful\n", "Your token has been saved to /root/.huggingface/token\n", "\u001b[1m\u001b[31mAuthenticated through git-credential store but this isn't the helper defined on your machine.\n", "You might have to re-authenticate when pushing to the Hugging Face Hub. Run the following command in your terminal in case you want to set this credential helper as the default\n", "\n", "git config --global credential.helper store\u001b[0m\n" ] } ], "source": [ "!huggingface-cli login" ] }, { "cell_type": "code", "source": [ "from huggingface_hub.keras_mixin import push_to_hub_keras\n", "push_to_hub_keras(model = cycle_gan_model.gen_G, repo_url = \"https://huggingface.co./keras-io/CycleGAN\", organization = \"keras-io\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 392, "referenced_widgets": [ "9f66f2bc1fb84f53b2c326b515daa96f", "4b348f6741934ab6b88ad5e886a82434", "2c3728bab3284ee395e46c1d22e2ac7d", "77ed1e6d34f5418fad61533c421aed45", "b29512c9852440af8becf8d6864a163d", "0a775f600f814d2c8b50ee5e329cc3dd", "bec9223c3e21469187d5746a54fd8c00", "6c4ce2edb90346ebaf8ceb9d214f8fcd", "f2681a3f49674709828d886bc4369a00", "48874b08b0e544bab61728cc706c1a77", "68dafbdb04584e31bfa5781c19305f60", "6a7cd029c1aa40608cc9d1a05e7d81e1", "45cdd8e8b1d5481983054e6882d02681", "f992b2e503ba461883ba92754f32c243", "7c6d35b412564fa0aa57589e7a275f94", "cd21fb3fe0804a2ab93afa9ff0006b31", "b10d2fc6597f4264a6be63cf44293b30", "68faaabe6b434d11801f2a5020471535", "f569a72bcb1d4a26904e0cdccc48f710", "ce2bb30406be4dcc8a0ff75cc133e520", "077a56dbea0147aca3f30345474dbcd4", "58a2ad54a42943faa8dbc4eeaf511791", "9e8f7edd06c14ff785d0fa8913817164", "5669cfef918f4bb886cb8326b76750c3", "358b5b20b965421b958ef8b8b9ce8ffd", "27c9ac578d6047cd83910befa69939ae", "43e4512b87104f9b965cebcb3b52d1fe", "281d15cdd58243389661e4ecc12b3379", "d9aae11f4cd34b56ab92ebb379b86db0", "e602268e25884e0c8ef24c7f7e55b10e", "60bbe43fe4334d5aa81f0d3204245edc", "ba2a44729ca94e7d9c0b7acb43417e36", "66b4845f1cb64ba28eb49ea7b7f5bad1" ] }, "id": "VSuvZe2bCzRZ", "outputId": "623a7592-2f61-40af-9746-a301d18042b8" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "Cloning https://huggingface.co./keras-io/CycleGAN into local empty directory.\n", "WARNING:huggingface_hub.repository:Cloning https://huggingface.co./keras-io/CycleGAN into local empty directory.\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n", "WARNING:absl:Function `_wrapped_model` contains input name(s) generator_G_img_input with unsupported characters which will be renamed to generator_g_img_input in the SavedModel.\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "INFO:tensorflow:Assets written to: CycleGAN/assets\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "INFO:tensorflow:Assets written to: CycleGAN/assets\n", "Adding files tracked by Git LFS: ['variables/variables.data-00000-of-00001']. This may take a bit of time if the files are large.\n", "WARNING:huggingface_hub.repository:Adding files tracked by Git LFS: ['variables/variables.data-00000-of-00001']. This may take a bit of time if the files are large.\n" ] }, { "output_type": "display_data", "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9f66f2bc1fb84f53b2c326b515daa96f", "version_minor": 0, "version_major": 2 }, "text/plain": [ "Upload file variables/variables.data-00000-of-00001: 0%| | 3.39k/43.5M [00:00 main\n", "\n", "WARNING:huggingface_hub.repository:To https://huggingface.co./keras-io/CycleGAN\n", " 39b9bac..0b34793 main -> main\n", "\n" ] }, { "output_type": "execute_result", "data": { "application/vnd.google.colaboratory.intrinsic+json": { "type": "string" }, "text/plain": [ "'https://huggingface.co./keras-io/CycleGAN/commit/0b34793d94f9a0cc57128b6195f6b6358c0c4eaf'" ] }, "metadata": {}, "execution_count": 19 } ] }, { "cell_type": "code", "source": [ "" ], "metadata": { "id": "npl2kR1rDCgX" }, "execution_count": null, "outputs": [] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [], "machine_shape": "hm", "name": "cyclegan", "provenance": [], "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "9f66f2bc1fb84f53b2c326b515daa96f": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_view_name": "HBoxView", "_dom_classes": [], "_model_name": "HBoxModel", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.5.0", "box_style": "", "layout": "IPY_MODEL_4b348f6741934ab6b88ad5e886a82434", "_model_module": "@jupyter-widgets/controls", "children": [ "IPY_MODEL_2c3728bab3284ee395e46c1d22e2ac7d", "IPY_MODEL_77ed1e6d34f5418fad61533c421aed45", "IPY_MODEL_b29512c9852440af8becf8d6864a163d" ] } }, "4b348f6741934ab6b88ad5e886a82434": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } }, "2c3728bab3284ee395e46c1d22e2ac7d": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_view_name": "HTMLView", "style": "IPY_MODEL_0a775f600f814d2c8b50ee5e329cc3dd", "_dom_classes": [], "description": "", "_model_name": "HTMLModel", "placeholder": "​", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "value": "Upload file variables/variables.data-00000-of-00001: 100%", "_view_count": null, "_view_module_version": "1.5.0", "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", "layout": "IPY_MODEL_bec9223c3e21469187d5746a54fd8c00" } }, "77ed1e6d34f5418fad61533c421aed45": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_view_name": "ProgressView", "style": "IPY_MODEL_6c4ce2edb90346ebaf8ceb9d214f8fcd", "_dom_classes": [], "description": "", "_model_name": "FloatProgressModel", "bar_style": "success", "max": 45592214, "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "value": 45592214, "_view_count": null, "_view_module_version": "1.5.0", "orientation": "horizontal", "min": 0, "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", "layout": "IPY_MODEL_f2681a3f49674709828d886bc4369a00" } }, "b29512c9852440af8becf8d6864a163d": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_view_name": "HTMLView", "style": "IPY_MODEL_48874b08b0e544bab61728cc706c1a77", "_dom_classes": [], "description": "", "_model_name": "HTMLModel", "placeholder": "​", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "value": " 43.5M/43.5M [00:33<00:00, 1.24MB/s]", "_view_count": null, "_view_module_version": "1.5.0", "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", "layout": "IPY_MODEL_68dafbdb04584e31bfa5781c19305f60" } }, "0a775f600f814d2c8b50ee5e329cc3dd": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_view_name": "StyleView", "_model_name": "DescriptionStyleModel", "description_width": "", "_view_module": "@jupyter-widgets/base", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.2.0", "_model_module": "@jupyter-widgets/controls" } }, "bec9223c3e21469187d5746a54fd8c00": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } }, "6c4ce2edb90346ebaf8ceb9d214f8fcd": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_view_name": "StyleView", "_model_name": "ProgressStyleModel", "description_width": "", "_view_module": "@jupyter-widgets/base", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.2.0", "bar_color": null, "_model_module": "@jupyter-widgets/controls" } }, "f2681a3f49674709828d886bc4369a00": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } }, "48874b08b0e544bab61728cc706c1a77": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_view_name": "StyleView", "_model_name": "DescriptionStyleModel", "description_width": "", "_view_module": "@jupyter-widgets/base", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.2.0", "_model_module": "@jupyter-widgets/controls" } }, "68dafbdb04584e31bfa5781c19305f60": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } }, "6a7cd029c1aa40608cc9d1a05e7d81e1": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_view_name": "HBoxView", "_dom_classes": [], "_model_name": "HBoxModel", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.5.0", "box_style": "", "layout": "IPY_MODEL_45cdd8e8b1d5481983054e6882d02681", "_model_module": "@jupyter-widgets/controls", "children": [ "IPY_MODEL_f992b2e503ba461883ba92754f32c243", "IPY_MODEL_7c6d35b412564fa0aa57589e7a275f94", "IPY_MODEL_cd21fb3fe0804a2ab93afa9ff0006b31" ] } }, "45cdd8e8b1d5481983054e6882d02681": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } }, "f992b2e503ba461883ba92754f32c243": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_view_name": "HTMLView", "style": "IPY_MODEL_b10d2fc6597f4264a6be63cf44293b30", "_dom_classes": [], "description": "", "_model_name": "HTMLModel", "placeholder": "​", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "value": "Upload file saved_model.pb: 100%", "_view_count": null, "_view_module_version": "1.5.0", "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", "layout": "IPY_MODEL_68faaabe6b434d11801f2a5020471535" } }, "7c6d35b412564fa0aa57589e7a275f94": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_view_name": "ProgressView", "style": "IPY_MODEL_f569a72bcb1d4a26904e0cdccc48f710", "_dom_classes": [], "description": "", "_model_name": "FloatProgressModel", "bar_style": "success", "max": 1580532, "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "value": 1580532, "_view_count": null, "_view_module_version": "1.5.0", "orientation": "horizontal", "min": 0, "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", "layout": "IPY_MODEL_ce2bb30406be4dcc8a0ff75cc133e520" } }, "cd21fb3fe0804a2ab93afa9ff0006b31": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_view_name": "HTMLView", "style": "IPY_MODEL_077a56dbea0147aca3f30345474dbcd4", "_dom_classes": [], "description": "", "_model_name": "HTMLModel", "placeholder": "​", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "value": " 1.51M/1.51M [00:33<00:00, 33.1kB/s]", "_view_count": null, "_view_module_version": "1.5.0", "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", "layout": "IPY_MODEL_58a2ad54a42943faa8dbc4eeaf511791" } }, "b10d2fc6597f4264a6be63cf44293b30": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_view_name": "StyleView", "_model_name": "DescriptionStyleModel", "description_width": "", "_view_module": "@jupyter-widgets/base", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.2.0", "_model_module": "@jupyter-widgets/controls" } }, "68faaabe6b434d11801f2a5020471535": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } }, "f569a72bcb1d4a26904e0cdccc48f710": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_view_name": "StyleView", "_model_name": "ProgressStyleModel", "description_width": "", "_view_module": "@jupyter-widgets/base", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.2.0", "bar_color": null, "_model_module": "@jupyter-widgets/controls" } }, "ce2bb30406be4dcc8a0ff75cc133e520": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } }, "077a56dbea0147aca3f30345474dbcd4": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_view_name": "StyleView", "_model_name": "DescriptionStyleModel", "description_width": "", "_view_module": "@jupyter-widgets/base", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.2.0", "_model_module": "@jupyter-widgets/controls" } }, "58a2ad54a42943faa8dbc4eeaf511791": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } }, "9e8f7edd06c14ff785d0fa8913817164": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_view_name": "HBoxView", "_dom_classes": [], "_model_name": "HBoxModel", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.5.0", "box_style": "", "layout": "IPY_MODEL_5669cfef918f4bb886cb8326b76750c3", "_model_module": "@jupyter-widgets/controls", "children": [ "IPY_MODEL_358b5b20b965421b958ef8b8b9ce8ffd", "IPY_MODEL_27c9ac578d6047cd83910befa69939ae", "IPY_MODEL_43e4512b87104f9b965cebcb3b52d1fe" ] } }, "5669cfef918f4bb886cb8326b76750c3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } }, "358b5b20b965421b958ef8b8b9ce8ffd": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_view_name": "HTMLView", "style": "IPY_MODEL_281d15cdd58243389661e4ecc12b3379", "_dom_classes": [], "description": "", "_model_name": "HTMLModel", "placeholder": "​", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "value": "Upload file keras_metadata.pb: 100%", "_view_count": null, "_view_module_version": "1.5.0", "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", "layout": "IPY_MODEL_d9aae11f4cd34b56ab92ebb379b86db0" } }, "27c9ac578d6047cd83910befa69939ae": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_view_name": "ProgressView", "style": "IPY_MODEL_e602268e25884e0c8ef24c7f7e55b10e", "_dom_classes": [], "description": "", "_model_name": "FloatProgressModel", "bar_style": "success", "max": 118258, "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "value": 118258, "_view_count": null, "_view_module_version": "1.5.0", "orientation": "horizontal", "min": 0, "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", "layout": "IPY_MODEL_60bbe43fe4334d5aa81f0d3204245edc" } }, "43e4512b87104f9b965cebcb3b52d1fe": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_view_name": "HTMLView", "style": "IPY_MODEL_ba2a44729ca94e7d9c0b7acb43417e36", "_dom_classes": [], "description": "", "_model_name": "HTMLModel", "placeholder": "​", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "value": " 115k/115k [00:33<00:00, 3.08kB/s]", "_view_count": null, "_view_module_version": "1.5.0", "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", "layout": "IPY_MODEL_66b4845f1cb64ba28eb49ea7b7f5bad1" } }, "281d15cdd58243389661e4ecc12b3379": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_view_name": "StyleView", "_model_name": "DescriptionStyleModel", "description_width": "", "_view_module": "@jupyter-widgets/base", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.2.0", "_model_module": "@jupyter-widgets/controls" } }, "d9aae11f4cd34b56ab92ebb379b86db0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } }, "e602268e25884e0c8ef24c7f7e55b10e": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_view_name": "StyleView", "_model_name": "ProgressStyleModel", "description_width": "", "_view_module": "@jupyter-widgets/base", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.2.0", "bar_color": null, "_model_module": "@jupyter-widgets/controls" } }, "60bbe43fe4334d5aa81f0d3204245edc": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } }, "ba2a44729ca94e7d9c0b7acb43417e36": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_view_name": "StyleView", "_model_name": "DescriptionStyleModel", "description_width": "", "_view_module": "@jupyter-widgets/base", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.2.0", "_model_module": "@jupyter-widgets/controls" } }, "66b4845f1cb64ba28eb49ea7b7f5bad1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } } } } }, "nbformat": 4, "nbformat_minor": 0 }