--- license: apache-2.0 base_model: t5-base tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: superglue_rte-t5-base results: - task: name: Text Classification type: text-classification dataset: name: super_glue type: super_glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.8405797101449275 --- # superglue_rte-t5-base This model is a fine-tuned version of [t5-base](https://huggingface.co./t5-base) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 1.8826 - Accuracy: 0.8406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7037 | 1.0 | 623 | 0.6646 | 0.5797 | | 0.6448 | 2.0 | 1246 | 0.5461 | 0.7899 | | 0.4943 | 3.0 | 1869 | 0.8069 | 0.7536 | | 0.3854 | 4.0 | 2492 | 1.2553 | 0.8188 | | 0.1244 | 5.0 | 3115 | 1.4887 | 0.7826 | | 0.0836 | 6.0 | 3738 | 1.7422 | 0.7681 | | 0.0672 | 7.0 | 4361 | 1.7002 | 0.8116 | | 0.0449 | 8.0 | 4984 | 1.9237 | 0.7971 | | 0.0246 | 9.0 | 5607 | 1.7064 | 0.7899 | | 0.0239 | 10.0 | 6230 | 1.4433 | 0.8551 | | 0.0233 | 11.0 | 6853 | 2.1623 | 0.7754 | | 0.0348 | 12.0 | 7476 | 2.2059 | 0.7754 | | 0.0268 | 13.0 | 8099 | 1.9322 | 0.8261 | | 0.0076 | 14.0 | 8722 | 2.5687 | 0.7464 | | 0.0117 | 15.0 | 9345 | 2.3024 | 0.7899 | | 0.0129 | 16.0 | 9968 | 2.0848 | 0.7971 | | 0.0206 | 17.0 | 10591 | 1.9453 | 0.8333 | | 0.0162 | 18.0 | 11214 | 2.1232 | 0.7971 | | 0.0132 | 19.0 | 11837 | 1.9754 | 0.8406 | | 0.0098 | 20.0 | 12460 | 1.8826 | 0.8406 | ### Framework versions - Transformers 4.32.1 - Pytorch 1.13.0+cu117 - Datasets 2.15.0 - Tokenizers 0.13.3