File size: 2,906 Bytes
416276a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
license: mit
base_model: kennethge123/superglue_rte-gpt2
tags:
- generated_from_trainer
datasets:
- bigbench
metrics:
- accuracy
model-index:
- name: entailed_after_rte-gpt2
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: bigbench
      type: bigbench
      config: entailed_polarity
      split: validation
      args: entailed_polarity
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7142857142857143
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# entailed_after_rte-gpt2

This model is a fine-tuned version of [kennethge123/superglue_rte-gpt2](https://huggingface.co./kennethge123/superglue_rte-gpt2) on the bigbench dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1865
- Accuracy: 0.7143

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 30   | 0.9025          | 0.3571   |
| No log        | 2.0   | 60   | 0.7155          | 0.5      |
| No log        | 3.0   | 90   | 1.0014          | 0.2857   |
| No log        | 4.0   | 120  | 0.9748          | 0.5714   |
| No log        | 5.0   | 150  | 0.9511          | 0.5714   |
| No log        | 6.0   | 180  | 1.0164          | 0.6429   |
| No log        | 7.0   | 210  | 1.6015          | 0.5      |
| No log        | 8.0   | 240  | 1.2833          | 0.6429   |
| No log        | 9.0   | 270  | 1.0093          | 0.7857   |
| No log        | 10.0  | 300  | 1.6339          | 0.6429   |
| No log        | 11.0  | 330  | 1.3461          | 0.5714   |
| No log        | 12.0  | 360  | 1.2949          | 0.6429   |
| No log        | 13.0  | 390  | 1.6343          | 0.6429   |
| No log        | 14.0  | 420  | 0.8418          | 0.8571   |
| No log        | 15.0  | 450  | 0.6750          | 0.8571   |
| No log        | 16.0  | 480  | 2.0221          | 0.6429   |
| 0.5929        | 17.0  | 510  | 0.7579          | 0.8571   |
| 0.5929        | 18.0  | 540  | 1.5713          | 0.7143   |
| 0.5929        | 19.0  | 570  | 1.0489          | 0.7143   |
| 0.5929        | 20.0  | 600  | 1.1865          | 0.7143   |


### Framework versions

- Transformers 4.37.0
- Pytorch 1.13.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.2