kenchenxingyu commited on
Commit
c309ad3
1 Parent(s): d235877

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -0
README.md CHANGED
@@ -88,12 +88,67 @@ Use the code below to get started with the model.
88
  #### Preprocessing [optional]
89
 
90
  [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
 
93
  #### Training Hyperparameters
94
 
95
  - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  #### Speeds, Sizes, Times [optional]
98
 
99
  <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
88
  #### Preprocessing [optional]
89
 
90
  [More Information Needed]
91
+ train_df['emotion_stance'] = "Classify based on the features:" + train_df['target_emotion_stance'].apply(lambda x: str(x)) + " in the text: " + train_df['source_text']
92
+ train_df['emotion'] = "Classify based on the features:" + train_df['target_emotion'].apply(lambda x: str(x)) + " in the text: " + train_df['source_text']
93
+ train_df['stance'] = "Classify based on the features:" + train_df['target_stance'].apply(lambda x: str(x)) + " in the text: " + train_df['source_text']
94
+
95
+ test_df['emotion_stance'] = "Classify based on the features:" + test_df['target_emotion_stance'].apply(lambda x: str(x)) + " in the text: " + test_df['source_text']
96
+ test_df['emotion'] = "Classify based on the features:" + test_df['target_emotion'].apply(lambda x: str(x)) + " in the text: " + test_df['source_text']
97
+ test_df['stance'] = "Classify based on the features:" + test_df['target_stance'].apply(lambda x: str(x)) + " in the text: " + test_df['source_text']
98
+
99
+ val_df['emotion_stance'] = "Classify based on the features:" + val_df['target_emotion_stance'].apply(lambda x: str(x)) + " in the text: " + val_df['source_text']
100
+ val_df['emotion'] = "Classify based on the features:" + val_df['target_emotion'].apply(lambda x: str(x)) + " in the text: " + val_df['source_text']
101
+ val_df['stance'] = "Classify based on the features:" + val_df['target_stance'].apply(lambda x: str(x)) + " in the text: " + val_df['source_text']
102
+
103
+ #label_dict = {0:'FAKE', 1:'REAL'}
104
+
105
+ train_df['target_text'] = train_df['target_text'].apply(lambda x: str(x))
106
+ val_df['target_text'] = val_df['target_text'].apply(lambda x: str(x))
107
+ test_df['target_text'] = test_df['target_text'].apply(lambda x: str(x))
108
+
109
+ max_length = 500
110
+
111
+ train_df = train_df[['source_text', 'target_text', #'src', #'dict_target_emotion_stance',
112
+ 'target_emotion_stance', 'target_emotion', 'target_stance',
113
+ 'emotion_stance', 'emotion', 'stance']]
114
+
115
+ test_df = test_df[['source_text', 'target_text', #'src', #'dict_target_emotion_stance',
116
+ 'target_emotion_stance', 'target_emotion', 'target_stance',
117
+ 'emotion_stance', 'emotion', 'stance']]
118
+
119
+ val_df = val_df[['source_text', 'target_text', #'src', #'dict_target_emotion_stance',
120
+ 'target_emotion_stance', 'target_emotion', 'target_stance',
121
+ 'emotion_stance', 'emotion', 'stance']]
122
 
123
 
124
  #### Training Hyperparameters
125
 
126
  - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
127
 
128
+ TrainingArguments(
129
+ output_dir="temp",
130
+ evaluation_strategy="epoch",
131
+ learning_rate=1e-3,
132
+ gradient_accumulation_steps=1,
133
+ #auto_find_batch_size=True,
134
+ num_train_epochs=2,
135
+ #save_steps=100,
136
+ weight_decay=0.01,
137
+ save_total_limit=2,
138
+
139
+
140
+ #optim="adafactor",
141
+ optim="adamw_torch_fused",
142
+ per_device_train_batch_size=128,
143
+ per_device_eval_batch_size=128,
144
+
145
+ # save_steps=1000,
146
+ # evaluation_strategy ="steps",
147
+ metric_for_best_model = 'eval_loss', #eval_loss
148
+ save_strategy="epoch",
149
+ load_best_model_at_end=True,
150
+ )
151
+
152
  #### Speeds, Sizes, Times [optional]
153
 
154
  <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->