hieule commited on
Commit
a9467ef
1 Parent(s): ee9b6bd

update Readme

Browse files
Files changed (1) hide show
  1. README.md +8 -7
README.md CHANGED
@@ -5,11 +5,12 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
 
8
  ---
9
 
10
- # {MODEL_NAME}
11
 
12
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
  <!--- Describe your model here -->
15
 
@@ -25,9 +26,9 @@ Then you can use the model like this:
25
 
26
  ```python
27
  from sentence_transformers import SentenceTransformer
28
- sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
- model = SentenceTransformer('{MODEL_NAME}')
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
@@ -50,11 +51,11 @@ def mean_pooling(model_output, attention_mask):
50
 
51
 
52
  # Sentences we want sentence embeddings for
53
- sentences = ['This is an example sentence', 'Each sentence is converted']
54
 
55
  # Load model from HuggingFace Hub
56
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
57
- model = AutoModel.from_pretrained('{MODEL_NAME}')
58
 
59
  # Tokenize sentences
60
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ - vietnamese
9
  ---
10
 
11
+ # {vietnamese-sbert}
12
 
13
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search on Vietnamese language.
14
 
15
  <!--- Describe your model here -->
16
 
 
26
 
27
  ```python
28
  from sentence_transformers import SentenceTransformer
29
+ sentences = [" giáo đang ăn kem", "Chị gái đang thử món thịt dê"]
30
 
31
+ model = SentenceTransformer('keepitreal/vietnamese-sbert')
32
  embeddings = model.encode(sentences)
33
  print(embeddings)
34
  ```
 
51
 
52
 
53
  # Sentences we want sentence embeddings for
54
+ sentences = [' giáo đang ăn kem', 'Chị gái đang thử món thịt dê']
55
 
56
  # Load model from HuggingFace Hub
57
+ tokenizer = AutoTokenizer.from_pretrained(''keepitreal/vietnamese-sbert')
58
+ model = AutoModel.from_pretrained('keepitreal/vietnamese-sbert')
59
 
60
  # Tokenize sentences
61
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')