--- base_model: kavg/TrOCR-SIN-DeiT tags: - generated_from_trainer model-index: - name: TrOCR-SIN-DeiT-Handwritten-Beam10-maxseq128 results: [] --- # TrOCR-SIN-DeiT-Handwritten-Beam10-maxseq128 This model is a fine-tuned version of [kavg/TrOCR-SIN-DeiT](https://huggingface.co./kavg/TrOCR-SIN-DeiT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7352 - Cer: 0.5340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | |:-------------:|:-----:|:----:|:------:|:---------------:| | 0.9936 | 1.75 | 100 | 0.6193 | 1.6907 | | 0.0819 | 3.51 | 200 | 0.6011 | 1.8343 | | 0.1437 | 5.26 | 300 | 0.6579 | 2.1956 | | 0.0857 | 7.02 | 400 | 0.6435 | 2.6580 | | 0.0531 | 8.77 | 500 | 0.5595 | 1.9046 | | 0.1282 | 10.53 | 600 | 0.6121 | 2.1264 | | 0.0247 | 12.28 | 700 | 0.6218 | 2.5938 | | 0.0071 | 14.04 | 800 | 0.6402 | 2.2984 | | 0.0235 | 15.79 | 900 | 0.5961 | 2.3736 | | 0.152 | 17.54 | 1000 | 0.5674 | 2.0205 | | 0.0521 | 19.3 | 1100 | 0.5802 | 2.5917 | | 0.0047 | 21.05 | 1200 | 0.6116 | 2.6910 | | 0.065 | 22.81 | 1300 | 0.5757 | 2.2894 | | 0.0313 | 24.56 | 1400 | 0.5647 | 2.6897 | | 0.0586 | 26.32 | 1500 | 0.5398 | 2.0499 | | 0.0015 | 28.07 | 1600 | 0.5505 | 2.3662 | | 0.0125 | 29.82 | 1700 | 0.6250 | 2.1673 | | 0.0207 | 31.58 | 1800 | 0.5674 | 2.0626 | | 0.0015 | 33.33 | 1900 | 0.6260 | 2.9868 | | 0.0004 | 35.09 | 2000 | 0.5792 | 2.5184 | | 0.001 | 36.84 | 2100 | 0.5557 | 2.8804 | | 0.0134 | 38.6 | 2200 | 0.6166 | 2.7627 | | 0.0017 | 40.35 | 2300 | 0.5477 | 2.2333 | | 0.0046 | 42.11 | 2400 | 0.5871 | 3.2010 | | 0.0003 | 43.86 | 2500 | 0.5485 | 2.7037 | | 0.0007 | 45.61 | 2600 | 0.5340 | 2.7352 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.1