--- license: mit base_model: kavg/LiLT-RE-PT tags: - generated_from_trainer datasets: - xfun metrics: - precision - recall - f1 model-index: - name: checkpoints results: [] --- # checkpoints This model is a fine-tuned version of [kavg/LiLT-RE-PT](https://huggingface.co./kavg/LiLT-RE-PT) on the xfun dataset. It achieves the following results on the evaluation set: - Precision: 0.3631 - Recall: 0.4823 - F1: 0.4143 - Loss: 0.1671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Precision | Recall | F1 | Validation Loss | |:-------------:|:------:|:-----:|:---------:|:------:|:------:|:---------------:| | 0.0907 | 41.67 | 500 | 0.3315 | 0.3106 | 0.3207 | 0.2039 | | 0.0766 | 83.33 | 1000 | 0.3631 | 0.4823 | 0.4143 | 0.1671 | | 0.0639 | 125.0 | 1500 | 0.3640 | 0.6086 | 0.4556 | 0.2525 | | 0.0309 | 166.67 | 2000 | 0.3973 | 0.6010 | 0.4784 | 0.2339 | | 0.0318 | 208.33 | 2500 | 0.4045 | 0.6414 | 0.4961 | 0.3325 | | 0.0144 | 250.0 | 3000 | 0.4268 | 0.6187 | 0.5052 | 0.3513 | | 0.0163 | 291.67 | 3500 | 0.4273 | 0.6086 | 0.5021 | 0.2880 | | 0.0062 | 333.33 | 4000 | 0.4368 | 0.6288 | 0.5155 | 0.3064 | | 0.0115 | 375.0 | 4500 | 0.4386 | 0.6313 | 0.5176 | 0.3283 | | 0.0168 | 416.67 | 5000 | 0.4373 | 0.6162 | 0.5115 | 0.3258 | | 0.0062 | 458.33 | 5500 | 0.4530 | 0.6086 | 0.5194 | 0.3467 | | 0.0074 | 500.0 | 6000 | 0.4569 | 0.6162 | 0.5247 | 0.3401 | | 0.0037 | 541.67 | 6500 | 0.4559 | 0.6136 | 0.5231 | 0.3526 | | 0.008 | 583.33 | 7000 | 0.4650 | 0.6035 | 0.5253 | 0.3076 | | 0.0045 | 625.0 | 7500 | 0.4610 | 0.6111 | 0.5255 | 0.3799 | | 0.0045 | 666.67 | 8000 | 0.4551 | 0.6136 | 0.5226 | 0.3692 | | 0.0052 | 708.33 | 8500 | 0.4535 | 0.6162 | 0.5225 | 0.3492 | | 0.0002 | 750.0 | 9000 | 0.4537 | 0.6061 | 0.5189 | 0.4075 | | 0.0027 | 791.67 | 9500 | 0.4581 | 0.6212 | 0.5273 | 0.3816 | | 0.0009 | 833.33 | 10000 | 0.4569 | 0.6162 | 0.5247 | 0.3834 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.1