--- license: mit base_model: nielsr/lilt-xlm-roberta-base tags: - generated_from_trainer datasets: - xfun metrics: - precision - recall - f1 model-index: - name: checkpoints results: [] --- # checkpoints This model is a fine-tuned version of [nielsr/lilt-xlm-roberta-base](https://huggingface.co./nielsr/lilt-xlm-roberta-base) on the xfun dataset. It achieves the following results on the evaluation set: - Precision: 0.3126 - Recall: 0.6777 - F1: 0.4278 - Loss: 0.5651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | F1 | Validation Loss | Precision | Recall | |:-------------:|:------:|:-----:|:------:|:---------------:|:---------:|:------:| | 0.2058 | 19.23 | 500 | 0 | 0.2763 | 0 | 0 | | 0.145 | 38.46 | 1000 | 0.0623 | 0.2325 | 0.2889 | 0.0349 | | 0.1441 | 57.69 | 1500 | 0.1232 | 0.2306 | 0.2616 | 0.0806 | | 0.0902 | 76.92 | 2000 | 0.2645 | 0.2439 | 0.2526 | 0.2775 | | 0.0768 | 96.15 | 2500 | 0.3176 | 0.3033 | 0.2440 | 0.4548 | | 0.0707 | 115.38 | 3000 | 0.3472 | 0.3333 | 0.2778 | 0.4628 | | 0.0649 | 134.62 | 3500 | 0.3509 | 0.3677 | 0.2629 | 0.5273 | | 0.0257 | 153.85 | 4000 | 0.3705 | 0.4219 | 0.2810 | 0.5434 | | 0.054 | 173.08 | 4500 | 0.3699 | 0.4440 | 0.2729 | 0.5739 | | 0.0368 | 192.31 | 5000 | 0.3942 | 0.4843 | 0.3005 | 0.5730 | | 0.0326 | 211.54 | 5500 | 0.3968 | 0.4651 | 0.2952 | 0.6052 | | 0.0412 | 230.77 | 6000 | 0.4100 | 0.5386 | 0.3018 | 0.6392 | | 0.0603 | 250.0 | 6500 | 0.4189 | 0.4957 | 0.3068 | 0.6598 | | 0.0215 | 269.23 | 7000 | 0.4127 | 0.4768 | 0.2999 | 0.6616 | | 0.0233 | 288.46 | 7500 | 0.4284 | 0.5245 | 0.3183 | 0.6553 | | 0.0212 | 307.69 | 8000 | 0.4259 | 0.5424 | 0.3091 | 0.6849 | | 0.0152 | 326.92 | 8500 | 0.4206 | 0.5655 | 0.3073 | 0.6661 | | 0.0147 | 346.15 | 9000 | 0.4260 | 0.5630 | 0.3123 | 0.6697 | | 0.0205 | 365.38 | 9500 | 0.4321 | 0.5389 | 0.3174 | 0.6768 | | 0.0115 | 384.62 | 10000 | 0.4278 | 0.5651 | 0.3126 | 0.6777 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.1