--- license: mit base_model: nielsr/lilt-xlm-roberta-base tags: - generated_from_trainer datasets: - xfun metrics: - precision - recall - f1 model-index: - name: checkpoints results: [] --- # checkpoints This model is a fine-tuned version of [nielsr/lilt-xlm-roberta-base](https://huggingface.co./nielsr/lilt-xlm-roberta-base) on the xfun dataset. It achieves the following results on the evaluation set: - Precision: 0.3054 - Recall: 0.6032 - F1: 0.4055 - Loss: 0.2164 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Precision | Recall | F1 | Validation Loss | |:-------------:|:------:|:-----:|:---------:|:------:|:------:|:---------------:| | 0.1914 | 20.83 | 500 | 0 | 0 | 0 | 0.2039 | | 0.1638 | 41.67 | 1000 | 0.4688 | 0.0252 | 0.0478 | 0.2196 | | 0.0928 | 62.5 | 1500 | 0.3790 | 0.1669 | 0.2318 | 0.2127 | | 0.0948 | 83.33 | 2000 | 0.3125 | 0.4245 | 0.3600 | 0.2987 | | 0.0796 | 104.17 | 2500 | 0.3102 | 0.5587 | 0.3989 | 0.3636 | | 0.0469 | 125.0 | 3000 | 0.3204 | 0.5134 | 0.3946 | 0.3587 | | 0.0471 | 145.83 | 3500 | 0.3303 | 0.5243 | 0.4053 | 0.2792 | | 0.0486 | 166.67 | 4000 | 0.2967 | 0.5973 | 0.3964 | 0.2973 | | 0.0381 | 187.5 | 4500 | 0.3066 | 0.6007 | 0.4060 | 0.3003 | | 0.0392 | 208.33 | 5000 | 0.3054 | 0.6032 | 0.4055 | 0.2164 | | 0.0268 | 229.17 | 5500 | 0.3052 | 0.6158 | 0.4081 | 0.3159 | | 0.029 | 250.0 | 6000 | 0.2850 | 0.6292 | 0.3923 | 0.3108 | | 0.0217 | 270.83 | 6500 | 0.2964 | 0.6141 | 0.3998 | 0.3130 | | 0.0241 | 291.67 | 7000 | 0.3012 | 0.6216 | 0.4058 | 0.3197 | | 0.038 | 312.5 | 7500 | 0.3051 | 0.6216 | 0.4093 | 0.2627 | | 0.0374 | 333.33 | 8000 | 0.2914 | 0.6359 | 0.3997 | 0.3388 | | 0.0194 | 354.17 | 8500 | 0.2975 | 0.6275 | 0.4037 | 0.3155 | | 0.0189 | 375.0 | 9000 | 0.3037 | 0.625 | 0.4088 | 0.2911 | | 0.0147 | 395.83 | 9500 | 0.2993 | 0.6242 | 0.4046 | 0.3417 | | 0.0328 | 416.67 | 10000 | 0.3012 | 0.6242 | 0.4063 | 0.3210 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.1