File size: 3,798 Bytes
006313a 42ec4d1 4cbd52c 08cf7ac 375f128 08cf7ac b25009a 28a2066 b25009a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
license: bigscience-openrail-m
datasets:
- lvwerra/stack-exchange-paired
language:
- en
tags:
- trl
- transformers
- rlhf
---
# Stack-Llama-2
[DPO](https://github.com/eric-mitchell/direct-preference-optimization) fine-tuned [Llama-2 7B model](https://huggingface.co./meta-llama/Llama-2-7b). The model is designed to generate human-like responses to questions in Stack Exchange domains of programming, mathematics, physics, and more. For more info check out the [blog post](https://huggingface.co./blog/dpo-trl) and github [example](https://github.com/lvwerra/trl/tree/main/examples/research_projects/stack_llama_2/scripts).
## Uses
### Direct Use
- Long-form question-answering on topics of programming, mathematics, and physics
- Demonstrating a Large Language Model's ability to follow target behavior of generating answers to a question that would be highly rated on [Stack Exchange](https://stackexchange.com).
### Out of Scope Use
- Replacing human expertise
## Bias, Risks, and Limitations
- Inherits bias, risks, and limitations from the LLaMA model, as described in the [LLaMA Model Card Bias Evaluation](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md#quantitative-analysis) and [Ethical Considerations](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md#ethical-considerations).
- Retains biases present in the Stack Exchange dataset. Per the [latest developer survey for Stack Overflow](https://survey.stackoverflow.co/2022/),
which constitutes a significant part of the StackExchange data,
most users who answered the survey identified themselves as [White or European, men, between 25 and 34 years old, and based in the US (with a significant part of responders from India).](https://survey.stackoverflow.co/2022/#developer-profile-demographics)
- May generate answers that are incorrect or misleading.
- May copy answers from the training data verbatim.
- May generate language that is hateful or promotes discrimination ([example](https://huggingface.co./trl-lib/llama-7b-se-rl-peft/discussions/7#64376083369f6f907f5bfe4c)).
- May generate language that is offensive to direct or indirect users or to people or groups mentioned.
### Recommendations
- Answers should be validated through the use of external sources.
- Disparities between the data contributors and the direct and indirect users of the technology should inform developers in assessing what constitutes an appropriate use case.
- Further research is needed to attribute model generations to sources in the training data, especially in cases where the model copies answers from the training data.
## Training Details
### Training Data
Original datasets are described in [the LLaMA Model Card](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md#training-dataset).
Fine-tuning datasets for this model are based on [Stack Exchange Paired](https://huggingface.co./datasets/lvwerra/stack-exchange-paired), which consists of questions and answers from various domains in Stack Exchange, such as programming, mathematics, physics, and more. Specifically:
**Traditional Fine-tuning:** [https://huggingface.co./datasets/lvwerra/stack-exchange-paired/tree/main/data/finetune](https://huggingface.co./datasets/lvwerra/stack-exchange-paired/tree/main/data/finetune)
**DPO Training:** [https://huggingface.co./datasets/lvwerra/stack-exchange-paired/tree/main/data/rl](https://huggingface.co./datasets/lvwerra/stack-exchange-paired/tree/main/data/rl)
### Training Procedure
The model was first fine-tuned on the Stack Exchange question and answer pairs and then fine-tuned via the DPO training procedure using the SFT model as the reference model. It is trained to respond to prompts with the following prompt template:
```
Question: <Query>
Answer: <Response>
```
|