kargaranamir commited on
Commit
f10f95e
·
1 Parent(s): dc68044

add example of readme

Browse files
Files changed (1) hide show
  1. README.md +28 -1
README.md CHANGED
@@ -27,6 +27,33 @@ widget:
27
 
28
  # T5-Reverse (T5R)
29
 
30
- This model can generate prompts (instruction) for any text!
31
 
32
  This model is an instruction-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on [alpaca dataset](https://huggingface.co/datasets/tatsu-lab/alpaca) but in **reverse format**!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
  # T5-Reverse (T5R)
29
 
30
+ This model can generate prompts (instructions) for any text!
31
 
32
  This model is an instruction-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on [alpaca dataset](https://huggingface.co/datasets/tatsu-lab/alpaca) but in **reverse format**!
33
+
34
+ ## How to Use the Model
35
+
36
+ You can use the `transformers` library to load and utilize the T5-Reverse (T5R) model for generating prompts based on text. Here's an example of how to do it:
37
+
38
+ ```python
39
+ # Import required libraries
40
+ import torch
41
+ from transformers import pipeline
42
+
43
+ # Load the model and tokenizer using the pipeline from Hugging Face Hub
44
+ inference = pipeline("text2text-generation", model="kargaranamir/T5R-base")
45
+
46
+ # Example instruction and prompt
47
+ sample = '''
48
+ Instruction: X
49
+ Output: 1- Base your meals on higher fibre starchy carbohydrates. 2- Eat lots of fruit and veg. 3- Eat more fish, including a portion of oily fish.
50
+ What kind of instruction could this be the answer to?
51
+ X:
52
+ '''
53
+
54
+ # Generate a response using the model
55
+ res = inference(sample)
56
+
57
+ # Print the generated response
58
+ print(res)
59
+ >> [{'generated_text': 'Instruction: Generate three recommendations for a healthy diet.'}]