--- license: apache-2.0 tags: - generated_from_keras_callback datasets: - disfl_qa metrics: - validation_accuracy model-index: - name: fintuned-bert-disfluency results: - task: name: Text Classification type: text-classification dataset: name: disfl_qa type: disfl_qa args: disfl_qa metrics: - name: Validation Accuracy type: validation_accuracy value: 0.9795 widget: - text: "I love football so much" example_title: "Non Disfluent" - text: "I love love football I like it" example_title: "Disfluent" --- # fintuned-bert-disfluency This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0814 - Train Sparse Categorical Accuracy: 0.9795 - Validation Loss: 0.0816 - Validation Sparse Categorical Accuracy: 0.9795 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| | 0.1105 | 0.9694 | 0.0821 | 0.9800 | 0 | | 0.0942 | 0.9759 | 0.0987 | 0.9765 | 1 | | 0.0814 | 0.9795 | 0.0816 | 0.9795 | 2 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1