--- library_name: transformers license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.87 --- # ast-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co./MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3848 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8911 | 1.0 | 113 | 1.7770 | 0.52 | | 0.9154 | 2.0 | 226 | 0.8861 | 0.77 | | 0.5408 | 3.0 | 339 | 0.5815 | 0.83 | | 0.3854 | 4.0 | 452 | 0.5075 | 0.86 | | 0.4656 | 5.0 | 565 | 0.4716 | 0.87 | | 0.3679 | 6.0 | 678 | 0.4578 | 0.87 | | 0.3263 | 7.0 | 791 | 0.4368 | 0.87 | | 0.4072 | 8.0 | 904 | 0.4078 | 0.88 | | 0.2734 | 9.0 | 1017 | 0.3847 | 0.88 | | 0.3517 | 10.0 | 1130 | 0.4185 | 0.88 | | 0.3147 | 11.0 | 1243 | 0.3946 | 0.86 | | 0.2572 | 12.0 | 1356 | 0.3899 | 0.88 | | 0.3696 | 13.0 | 1469 | 0.3843 | 0.87 | | 0.256 | 14.0 | 1582 | 0.3872 | 0.87 | | 0.3737 | 15.0 | 1695 | 0.3914 | 0.88 | | 0.1702 | 16.0 | 1808 | 0.3863 | 0.87 | | 0.2974 | 17.0 | 1921 | 0.3857 | 0.87 | | 0.1916 | 18.0 | 2034 | 0.3855 | 0.87 | | 0.223 | 19.0 | 2147 | 0.3848 | 0.87 | | 0.1942 | 20.0 | 2260 | 0.3848 | 0.87 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1