iubaris-13b-v3_GPTQ / handler.py
kajdun's picture
Update handler.py
db34714
from typing import Dict, List, Any
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
import torch
from loguru import logger
MAX_INPUT_TOKEN_LENGTH = 4000
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
class EndpointHandler():
def __init__(self, path=""):
self.model = AutoGPTQForCausalLM.from_quantized(path, device_map="auto", use_safetensors=True)
self.tokenizer = AutoTokenizer.from_pretrained(path)
def get_input_token_length(self, message: str) -> int:
input_ids = self.tokenizer([message], return_tensors='np', add_special_tokens=False)['input_ids']
return input_ids.shape[-1]
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", {})
parameters["max_new_tokens"] = parameters.pop("max_new_tokens", DEFAULT_MAX_NEW_TOKENS)
if parameters["max_new_tokens"] > MAX_MAX_NEW_TOKENS:
logger.error(f"requested max_new_tokens too high (> {MAX_MAX_NEW_TOKENS})")
return [{"generated_text": None, "error": f"requested max_new_tokens too high (> {MAX_MAX_NEW_TOKENS})"}]
input_token_length = self.get_input_token_length(inputs)
if input_token_length > MAX_INPUT_TOKEN_LENGTH:
logger.error(f"input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH})")
return [{"generated_text": None, "error": f"input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH})"}]
logger.info(f"inputs: {inputs}")
input_ids = self.tokenizer(inputs, return_tensors="pt").to(self.model.device)
outputs = self.model.generate(**input_ids, **parameters)
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
return [{"generated_text": prediction}]