Seongyun commited on
Commit
4309e3a
1 Parent(s): c474e00

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -2
README.md CHANGED
@@ -20,7 +20,7 @@ language:
20
  # TL; DR
21
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6550c4f27bbfce1878f5f280/vrQl8D8FV3vqUJYbPgsiG.png)
22
 
23
- Janus is a model trained using [Mistral-7B-v0.2](https://huggingface.co/mistral-community/Mistral-7B-v0.2) as its base model. Janus has been trained on [Multifaceted Collection](), a preference dataset containing 192k unique system messages for aligning LLMs to diverse human preferences. Janus not only excels at generating personalized responses that cater to various human preferences but is also adept at producing responses that are generally preferred for being helpful and harmless.
24
 
25
  # Model Details
26
 
@@ -30,7 +30,7 @@ Janus is a model trained using [Mistral-7B-v0.2](https://huggingface.co/mistral-
30
  - **Language(s) (NLP):** English
31
  - **License:** Apache 2.0
32
  - **Related Models:** [Janus-66k-7B]() [Janus-DPO-7B](), [Janus-ORPO-7B](), [Janus-RM-7B]()
33
- - **Training Data**: [Multifaceted Collection]()
34
  - **Resources for more information:**
35
  - [Research paper]()
36
  - [GitHub Repo](https://github.com/kaistAI/Janus)
@@ -79,6 +79,8 @@ decoded = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
79
  print(decoded[0][len(input_str):])
80
  # Revolutionary Trends: How AI Is Redefining Efficiency and Accuracy in the Financial Realm
81
  ```
 
 
82
  # Training Details
83
  ## Training hyperparameters
84
 
 
20
  # TL; DR
21
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6550c4f27bbfce1878f5f280/vrQl8D8FV3vqUJYbPgsiG.png)
22
 
23
+ Janus is a model trained using [Mistral-7B-v0.2](https://huggingface.co/mistral-community/Mistral-7B-v0.2) as its base model. Janus has been trained on [Multifaceted Collection](https://huggingface.co/datasets/kaist-ai/Multifaceted-Collection-SFT), a preference dataset containing 192k unique system messages for aligning LLMs to diverse human preferences. Janus not only excels at generating personalized responses that cater to various human preferences but is also adept at producing responses that are generally preferred for being helpful and harmless.
24
 
25
  # Model Details
26
 
 
30
  - **Language(s) (NLP):** English
31
  - **License:** Apache 2.0
32
  - **Related Models:** [Janus-66k-7B]() [Janus-DPO-7B](), [Janus-ORPO-7B](), [Janus-RM-7B]()
33
+ - **Training Datasets**: [Multifaceted-Collection-SFT](https://huggingface.co/datasets/kaist-ai/Multifaceted-Collection-SFT), [Multifaceted-Collection-DPO](https://huggingface.co/datasets/kaist-ai/Multifaceted-Collection-DPO), [Multifaceted-Collection-ORPO](https://huggingface.co/datasets/kaist-ai/Multifaceted-Collection-ORPO), [Multifaceted-Collection-RM](https://huggingface.co/datasets/kaist-ai/Multifaceted-Collection-RM)
34
  - **Resources for more information:**
35
  - [Research paper]()
36
  - [GitHub Repo](https://github.com/kaistAI/Janus)
 
79
  print(decoded[0][len(input_str):])
80
  # Revolutionary Trends: How AI Is Redefining Efficiency and Accuracy in the Financial Realm
81
  ```
82
+ To train Janus and evaluate the responses it generates, please refer to the [GitHub Repo](https://github.com/kaistAI/Janus).
83
+ Additionally, refer to the [Multifaceted Bench](https://huggingface.co/datasets/kaist-ai/Multifaceted-Bench), which evaluates how well LLM generates personalized responses.
84
  # Training Details
85
  ## Training hyperparameters
86