File size: 3,070 Bytes
4648a5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
base_model: alpindale/Mistral-7B-v0.2-hf
tags:
- axolotl
- generated_from_trainer
model-index:
- name: mpa-Mistral-7b-v0.2-hf-sft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: alpindale/Mistral-7B-v0.2-hf
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: /data/seongyun/open-instruct-2/augmented_diverse_response/preferences_v1_responses_for_training.jsonl
type:
system_prompt: ""
system_format: "[INST] {system}\n"
field_system: system
field_instruction: instruction
field_output: output
format: "{instruction} [/INST]"
no_input_format: "{instruction} [/INST]"
# conversation: mistral
dataset_prepared_path:
hub_model_id: kaist-ai/mpa-Mistral-7b-v0.2-hf-sft
hub_strategy: checkpoint
# val_set_size: 0
output_dir: /data/suehyun/axolotl/outputs/mpa/mistral-7b-v0.2-hf
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project: mpa
wandb_entity: suehyun
wandb_watch:
wandb_name: mpa_mistral-7b-v0.2-hf
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
# evals_per_epoch: 4
eval_table_size:
# eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
# mpa-Mistral-7b-v0.2-hf-sft
This model is a fine-tuned version of [alpindale/Mistral-7B-v0.2-hf](https://huggingface.co./alpindale/Mistral-7B-v0.2-hf) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
### Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.2.2
- Datasets 2.18.0
- Tokenizers 0.15.0
|