GPT3-dev-125m-0612 / modeling_gpt3dev.py
k050506koch's picture
Upload weights
e92560a verified
raw
history blame
7.61 kB
import math
import torch
import torch.nn as nn
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from transformers.models.gpt2.modeling_gpt2 import (
GPT2LMHeadModel,
GPT2Model,
GPT2Block,
GPT2Attention,
GPT2MLP,
CausalLMOutputWithCrossAttentions
)
from transformers import (
CONFIG_MAPPING,
AutoConfig,
AutoModel,
AutoModelForCausalLM,
)
from transformers.utils import logging
logger = logging.get_logger(__name__)
# Custom Configuration Class
class GPT3DevConfig(GPT2Config):
model_type = "gpt3dev"
def __init__(self, use_pre_layernorm=True, **kwargs):
super().__init__(**kwargs)
self.use_pre_layernorm = use_pre_layernorm
# Register the configuration with AutoConfig
CONFIG_MAPPING.register("gpt3dev", GPT3DevConfig)
AutoConfig.register("gpt3dev", GPT3DevConfig)
# Custom Attention Module
class GPT3DevAttention(GPT2Attention):
def __init__(self, config, is_cross_attention=False):
super().__init__(config, is_cross_attention)
# Ensure biases are included
self.c_attn = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=True)
self.c_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
# Custom MLP Module
class GPT3DevMLP(GPT2MLP):
def __init__(self, intermediate_size, config):
super().__init__(intermediate_size, config)
self.c_fc = nn.Linear(config.hidden_size, intermediate_size, bias=True)
self.c_proj = nn.Linear(intermediate_size, config.hidden_size, bias=True)
self.act = nn.GELU() # Use standard GeLU
# Custom Transformer Block
class GPT3DevBlock(GPT2Block):
def __init__(self, config):
super().__init__(config)
self.use_pre_layernorm = config.use_pre_layernorm
self.ln_1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.attn = GPT3DevAttention(config)
self.mlp = GPT3DevMLP(4 * config.hidden_size, config)
self.ln_2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
def forward(
self,
hidden_states,
layer_past=None,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
use_cache=None,
output_attentions=False,
):
if self.use_pre_layernorm:
# Pre-LayerNorm
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_outputs = self.attn(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0]
outputs = attn_outputs[1:] # present, (attentions)
hidden_states = residual + attn_output
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states)
hidden_states = residual + feed_forward_hidden_states
else:
# Original GPT-2 Post-LayerNorm
residual = hidden_states
attn_outputs = self.attn(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0]
outputs = attn_outputs[1:] # present, (attentions)
hidden_states = residual + attn_output
hidden_states = self.ln_1(hidden_states)
residual = hidden_states
feed_forward_hidden_states = self.mlp(hidden_states)
hidden_states = residual + feed_forward_hidden_states
hidden_states = self.ln_2(hidden_states)
if use_cache:
outputs = (hidden_states,) + outputs
else:
outputs = (hidden_states,) + outputs[1:]
return outputs # hidden_states, present, (attentions)
# Custom Transformer Model
class GPT3DevModel(GPT2Model):
config_class = GPT3DevConfig
def __init__(self, config):
super().__init__(config)
self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
self.wpe = nn.Embedding(config.n_positions, config.hidden_size)
self.drop = nn.Dropout(config.embd_pdrop)
self.h = nn.ModuleList(
[GPT3DevBlock(config) for _ in range(config.num_hidden_layers)]
)
self.ln_f = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
# Initialize weights
self.post_init()
# Custom LM Head Model
class GPT3DevLMHeadModel(GPT2LMHeadModel):
config_class = GPT3DevConfig
def __init__(self, config):
super().__init__(config)
self.transformer = GPT3DevModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights
self.post_init()
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1)
)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
# Register the custom model with AutoModel and AutoModelForCausalLM
AutoConfig.register("gpt3dev", GPT3DevConfig)
AutoModel.register(GPT3DevConfig, GPT3DevModel)
AutoModelForCausalLM.register(GPT3DevConfig, GPT3DevLMHeadModel)