File size: 7,608 Bytes
e92560a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import math
import torch
import torch.nn as nn
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from transformers.models.gpt2.modeling_gpt2 import (
    GPT2LMHeadModel,
    GPT2Model,
    GPT2Block,
    GPT2Attention,
    GPT2MLP,
    CausalLMOutputWithCrossAttentions
)

from transformers import (
    CONFIG_MAPPING,
    AutoConfig,
    AutoModel,
    AutoModelForCausalLM,
)
from transformers.utils import logging

logger = logging.get_logger(__name__)

# Custom Configuration Class
class GPT3DevConfig(GPT2Config):
    model_type = "gpt3dev"

    def __init__(self, use_pre_layernorm=True, **kwargs):
        super().__init__(**kwargs)
        self.use_pre_layernorm = use_pre_layernorm

# Register the configuration with AutoConfig
CONFIG_MAPPING.register("gpt3dev", GPT3DevConfig)
AutoConfig.register("gpt3dev", GPT3DevConfig)

# Custom Attention Module
class GPT3DevAttention(GPT2Attention):
    def __init__(self, config, is_cross_attention=False):
        super().__init__(config, is_cross_attention)

        # Ensure biases are included
        self.c_attn = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=True)
        self.c_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)

# Custom MLP Module
class GPT3DevMLP(GPT2MLP):
    def __init__(self, intermediate_size, config):
        super().__init__(intermediate_size, config)
        self.c_fc = nn.Linear(config.hidden_size, intermediate_size, bias=True)
        self.c_proj = nn.Linear(intermediate_size, config.hidden_size, bias=True)
        self.act = nn.GELU()  # Use standard GeLU

# Custom Transformer Block
class GPT3DevBlock(GPT2Block):
    def __init__(self, config):
        super().__init__(config)
        self.use_pre_layernorm = config.use_pre_layernorm
        self.ln_1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
        self.attn = GPT3DevAttention(config)
        self.mlp = GPT3DevMLP(4 * config.hidden_size, config)
        self.ln_2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)

    def forward(
        self,
        hidden_states,
        layer_past=None,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        use_cache=None,
        output_attentions=False,
    ):
        if self.use_pre_layernorm:
            # Pre-LayerNorm
            residual = hidden_states
            hidden_states = self.ln_1(hidden_states)
            attn_outputs = self.attn(
                hidden_states,
                layer_past=layer_past,
                attention_mask=attention_mask,
                head_mask=head_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                use_cache=use_cache,
                output_attentions=output_attentions,
            )
            attn_output = attn_outputs[0]
            outputs = attn_outputs[1:]  # present, (attentions)

            hidden_states = residual + attn_output

            residual = hidden_states
            hidden_states = self.ln_2(hidden_states)
            feed_forward_hidden_states = self.mlp(hidden_states)
            hidden_states = residual + feed_forward_hidden_states
        else:
            # Original GPT-2 Post-LayerNorm
            residual = hidden_states
            attn_outputs = self.attn(
                hidden_states,
                layer_past=layer_past,
                attention_mask=attention_mask,
                head_mask=head_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                use_cache=use_cache,
                output_attentions=output_attentions,
            )
            attn_output = attn_outputs[0]
            outputs = attn_outputs[1:]  # present, (attentions)

            hidden_states = residual + attn_output
            hidden_states = self.ln_1(hidden_states)

            residual = hidden_states
            feed_forward_hidden_states = self.mlp(hidden_states)
            hidden_states = residual + feed_forward_hidden_states
            hidden_states = self.ln_2(hidden_states)

        if use_cache:
            outputs = (hidden_states,) + outputs
        else:
            outputs = (hidden_states,) + outputs[1:]

        return outputs  # hidden_states, present, (attentions)

# Custom Transformer Model
class GPT3DevModel(GPT2Model):
    config_class = GPT3DevConfig

    def __init__(self, config):
        super().__init__(config)

        self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
        self.wpe = nn.Embedding(config.n_positions, config.hidden_size)
        self.drop = nn.Dropout(config.embd_pdrop)
        self.h = nn.ModuleList(
            [GPT3DevBlock(config) for _ in range(config.num_hidden_layers)]
        )
        self.ln_f = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)

        # Initialize weights
        self.post_init()

# Custom LM Head Model
class GPT3DevLMHeadModel(GPT2LMHeadModel):
    config_class = GPT3DevConfig

    def __init__(self, config):
        super().__init__(config)
        self.transformer = GPT3DevModel(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights
        self.post_init()

    def forward(
        self,
        input_ids=None,
        past_key_values=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = transformer_outputs[0]

        lm_logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(-1, shift_logits.size(-1)),
                shift_labels.view(-1)
            )

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
            cross_attentions=transformer_outputs.cross_attentions,
        )

# Register the custom model with AutoModel and AutoModelForCausalLM
AutoConfig.register("gpt3dev", GPT3DevConfig)
AutoModel.register(GPT3DevConfig, GPT3DevModel)
AutoModelForCausalLM.register(GPT3DevConfig, GPT3DevLMHeadModel)