jysh1023 commited on
Commit
ec34a87
·
1 Parent(s): d55c5fd

End of training

Browse files
README.md CHANGED
@@ -5,24 +5,9 @@ tags:
5
  - generated_from_trainer
6
  datasets:
7
  - glue
8
- metrics:
9
- - accuracy
10
  model-index:
11
  - name: bert_uncased_L-6_H-768_A-12-QAT
12
- results:
13
- - task:
14
- name: Text Classification
15
- type: text-classification
16
- dataset:
17
- name: glue
18
- type: glue
19
- config: sst2
20
- split: validation
21
- args: sst2
22
- metrics:
23
- - name: Accuracy
24
- type: accuracy
25
- value: 0.9094036697247706
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,9 +16,6 @@ should probably proofread and complete it, then remove this comment. -->
31
  # bert_uncased_L-6_H-768_A-12-QAT
32
 
33
  This model is a fine-tuned version of [google/bert_uncased_L-6_H-768_A-12](https://huggingface.co/google/bert_uncased_L-6_H-768_A-12) on the glue dataset.
34
- It achieves the following results on the evaluation set:
35
- - Loss: 0.3239
36
- - Accuracy: 0.9094
37
 
38
  ## Model description
39
 
@@ -52,26 +34,16 @@ More information needed
52
  ### Training hyperparameters
53
 
54
  The following hyperparameters were used during training:
55
- - learning_rate: 6e-05
56
- - train_batch_size: 128
57
- - eval_batch_size: 128
58
- - seed: 33
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
- - num_epochs: 7
62
- - mixed_precision_training: Native AMP
63
 
64
  ### Training results
65
 
66
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
- | 0.0485 | 1.0 | 527 | 0.3517 | 0.8819 |
69
- | 0.0862 | 2.0 | 1054 | 0.3239 | 0.9094 |
70
- | 0.0538 | 3.0 | 1581 | 0.2942 | 0.9083 |
71
- | 0.0354 | 4.0 | 2108 | 0.3710 | 0.9071 |
72
- | 0.0248 | 5.0 | 2635 | 0.3842 | 0.9002 |
73
- | 0.0152 | 6.0 | 3162 | 0.4606 | 0.8956 |
74
- | 0.0105 | 7.0 | 3689 | 0.5514 | 0.8979 |
75
 
76
 
77
  ### Framework versions
 
5
  - generated_from_trainer
6
  datasets:
7
  - glue
 
 
8
  model-index:
9
  - name: bert_uncased_L-6_H-768_A-12-QAT
10
+ results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
16
  # bert_uncased_L-6_H-768_A-12-QAT
17
 
18
  This model is a fine-tuned version of [google/bert_uncased_L-6_H-768_A-12](https://huggingface.co/google/bert_uncased_L-6_H-768_A-12) on the glue dataset.
 
 
 
19
 
20
  ## Model description
21
 
 
34
  ### Training hyperparameters
35
 
36
  The following hyperparameters were used during training:
37
+ - learning_rate: 5e-05
38
+ - train_batch_size: 8
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
  - lr_scheduler_type: linear
43
+ - num_epochs: 1.0
 
44
 
45
  ### Training results
46
 
 
 
 
 
 
 
 
 
 
47
 
48
 
49
  ### Framework versions
compressed_graph.dot ADDED
The diff for this file is too large to render. See raw diff
 
nncf_output.log ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ INFO:nncf:Not adding activation input quantizer for operation: 7 BertForSequenceClassification/BertModel[bert]/BertEmbeddings[embeddings]/NNCFEmbedding[position_embeddings]/embedding_0
2
+ INFO:nncf:Not adding activation input quantizer for operation: 4 BertForSequenceClassification/BertModel[bert]/BertEmbeddings[embeddings]/NNCFEmbedding[word_embeddings]/embedding_0
3
+ INFO:nncf:Not adding activation input quantizer for operation: 5 BertForSequenceClassification/BertModel[bert]/BertEmbeddings[embeddings]/NNCFEmbedding[token_type_embeddings]/embedding_0
4
+ INFO:nncf:Not adding activation input quantizer for operation: 6 BertForSequenceClassification/BertModel[bert]/BertEmbeddings[embeddings]/__add___0
5
+ INFO:nncf:Not adding activation input quantizer for operation: 8 BertForSequenceClassification/BertModel[bert]/BertEmbeddings[embeddings]/__iadd___0
6
+ INFO:nncf:Not adding activation input quantizer for operation: 9 BertForSequenceClassification/BertModel[bert]/BertEmbeddings[embeddings]/NNCFLayerNorm[LayerNorm]/layer_norm_0
7
+ INFO:nncf:Not adding activation input quantizer for operation: 10 BertForSequenceClassification/BertModel[bert]/BertEmbeddings[embeddings]/Dropout[dropout]/dropout_0
8
+ INFO:nncf:Not adding activation input quantizer for operation: 23 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/__add___0
9
+ INFO:nncf:Not adding activation input quantizer for operation: 26 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/matmul_1
10
+ INFO:nncf:Not adding activation input quantizer for operation: 32 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfOutput[output]/__add___0
11
+ INFO:nncf:Not adding activation input quantizer for operation: 33 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
12
+ INFO:nncf:Not adding activation input quantizer for operation: 38 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/__add___0
13
+ INFO:nncf:Not adding activation input quantizer for operation: 39 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
14
+ INFO:nncf:Not adding activation input quantizer for operation: 52 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/__add___0
15
+ INFO:nncf:Not adding activation input quantizer for operation: 55 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/matmul_1
16
+ INFO:nncf:Not adding activation input quantizer for operation: 61 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfOutput[output]/__add___0
17
+ INFO:nncf:Not adding activation input quantizer for operation: 62 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
18
+ INFO:nncf:Not adding activation input quantizer for operation: 67 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/__add___0
19
+ INFO:nncf:Not adding activation input quantizer for operation: 68 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
20
+ INFO:nncf:Not adding activation input quantizer for operation: 81 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/__add___0
21
+ INFO:nncf:Not adding activation input quantizer for operation: 84 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/matmul_1
22
+ INFO:nncf:Not adding activation input quantizer for operation: 90 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfOutput[output]/__add___0
23
+ INFO:nncf:Not adding activation input quantizer for operation: 91 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
24
+ INFO:nncf:Not adding activation input quantizer for operation: 96 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/__add___0
25
+ INFO:nncf:Not adding activation input quantizer for operation: 97 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
26
+ INFO:nncf:Not adding activation input quantizer for operation: 110 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/__add___0
27
+ INFO:nncf:Not adding activation input quantizer for operation: 113 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/matmul_1
28
+ INFO:nncf:Not adding activation input quantizer for operation: 119 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfOutput[output]/__add___0
29
+ INFO:nncf:Not adding activation input quantizer for operation: 120 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
30
+ INFO:nncf:Not adding activation input quantizer for operation: 125 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/__add___0
31
+ INFO:nncf:Not adding activation input quantizer for operation: 126 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
32
+ INFO:nncf:Not adding activation input quantizer for operation: 139 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/__add___0
33
+ INFO:nncf:Not adding activation input quantizer for operation: 142 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/matmul_1
34
+ INFO:nncf:Not adding activation input quantizer for operation: 148 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfOutput[output]/__add___0
35
+ INFO:nncf:Not adding activation input quantizer for operation: 149 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
36
+ INFO:nncf:Not adding activation input quantizer for operation: 154 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/__add___0
37
+ INFO:nncf:Not adding activation input quantizer for operation: 155 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
38
+ INFO:nncf:Not adding activation input quantizer for operation: 168 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/__add___0
39
+ INFO:nncf:Not adding activation input quantizer for operation: 171 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/matmul_1
40
+ INFO:nncf:Not adding activation input quantizer for operation: 177 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfOutput[output]/__add___0
41
+ INFO:nncf:Not adding activation input quantizer for operation: 178 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
42
+ INFO:nncf:Not adding activation input quantizer for operation: 183 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/__add___0
43
+ INFO:nncf:Not adding activation input quantizer for operation: 184 BertForSequenceClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
44
+ INFO:nncf:Collecting tensor statistics |█ | 4 / 38
45
+ INFO:nncf:Collecting tensor statistics |███ | 8 / 38
46
+ INFO:nncf:Collecting tensor statistics |█████ | 12 / 38
47
+ INFO:nncf:Collecting tensor statistics |██████ | 16 / 38
48
+ INFO:nncf:Collecting tensor statistics |████████ | 20 / 38
49
+ INFO:nncf:Collecting tensor statistics |██████████ | 24 / 38
50
+ INFO:nncf:Collecting tensor statistics |███████████ | 28 / 38
51
+ INFO:nncf:Collecting tensor statistics |█████████████ | 32 / 38
52
+ INFO:nncf:Collecting tensor statistics |███████████████ | 36 / 38
53
+ INFO:nncf:Collecting tensor statistics |████████████████| 38 / 38
54
+ INFO:nncf:Compiling and loading torch extension: quantized_functions_cuda...
55
+ INFO:nncf:Finished loading torch extension: quantized_functions_cuda
56
+ WARNING:nncf:You are setting `forward` on an NNCF-processed model object.
57
+ NNCF relies on custom-wrapping the `forward` call in order to function properly.
58
+ Arbitrary adjustments to the forward function on an NNCFNetwork object have undefined behavior.
59
+ If you need to replace the underlying forward function of the original model so that NNCF should be using that instead of the original forward function that NNCF saved during the compressed model creation, you can do this by calling:
60
+ model.nncf.set_original_unbound_forward(fn)
61
+ if `fn` has an unbound 0-th `self` argument, or
62
+ with model.nncf.temporary_bound_original_forward(fn): ...
63
+ if `fn` already had 0-th `self` argument bound or never had it in the first place.
64
+ WARNING:nncf:You are setting `forward` on an NNCF-processed model object.
65
+ NNCF relies on custom-wrapping the `forward` call in order to function properly.
66
+ Arbitrary adjustments to the forward function on an NNCFNetwork object have undefined behavior.
67
+ If you need to replace the underlying forward function of the original model so that NNCF should be using that instead of the original forward function that NNCF saved during the compressed model creation, you can do this by calling:
68
+ model.nncf.set_original_unbound_forward(fn)
69
+ if `fn` has an unbound 0-th `self` argument, or
70
+ with model.nncf.temporary_bound_original_forward(fn): ...
71
+ if `fn` already had 0-th `self` argument bound or never had it in the first place.
72
+ INFO:nncf:Statistics of the quantization algorithm:
73
+ Epoch 0 |+--------------------------------+-------+
74
+ Epoch 0 || Statistic's name | Value |
75
+ Epoch 0 |+================================+=======+
76
+ Epoch 0 || Ratio of enabled quantizations | 100 |
77
+ Epoch 0 |+--------------------------------+-------+
78
+ Epoch 0 |
79
+ Epoch 0 |Statistics of the quantization share:
80
+ Epoch 0 |+----------------------------------+--------------------+
81
+ Epoch 0 || Statistic's name | Value |
82
+ Epoch 0 |+==================================+====================+
83
+ Epoch 0 || Symmetric WQs / All placed WQs | 100.00 % (38 / 38) |
84
+ Epoch 0 |+----------------------------------+--------------------+
85
+ Epoch 0 || Asymmetric WQs / All placed WQs | 0.00 % (0 / 38) |
86
+ Epoch 0 |+----------------------------------+--------------------+
87
+ Epoch 0 || Signed WQs / All placed WQs | 100.00 % (38 / 38) |
88
+ Epoch 0 |+----------------------------------+--------------------+
89
+ Epoch 0 || Unsigned WQs / All placed WQs | 0.00 % (0 / 38) |
90
+ Epoch 0 |+----------------------------------+--------------------+
91
+ Epoch 0 || Per-tensor WQs / All placed WQs | 0.00 % (0 / 38) |
92
+ Epoch 0 |+----------------------------------+--------------------+
93
+ Epoch 0 || Per-channel WQs / All placed WQs | 100.00 % (38 / 38) |
94
+ Epoch 0 |+----------------------------------+--------------------+
95
+ Epoch 0 || Placed WQs / Potential WQs | 70.37 % (38 / 54) |
96
+ Epoch 0 |+----------------------------------+--------------------+
97
+ Epoch 0 || Symmetric AQs / All placed AQs | 24.00 % (12 / 50) |
98
+ Epoch 0 |+----------------------------------+--------------------+
99
+ Epoch 0 || Asymmetric AQs / All placed AQs | 76.00 % (38 / 50) |
100
+ Epoch 0 |+----------------------------------+--------------------+
101
+ Epoch 0 || Signed AQs / All placed AQs | 100.00 % (50 / 50) |
102
+ Epoch 0 |+----------------------------------+--------------------+
103
+ Epoch 0 || Unsigned AQs / All placed AQs | 0.00 % (0 / 50) |
104
+ Epoch 0 |+----------------------------------+--------------------+
105
+ Epoch 0 || Per-tensor AQs / All placed AQs | 100.00 % (50 / 50) |
106
+ Epoch 0 |+----------------------------------+--------------------+
107
+ Epoch 0 || Per-channel AQs / All placed AQs | 0.00 % (0 / 50) |
108
+ Epoch 0 |+----------------------------------+--------------------+
109
+ Epoch 0 |
110
+ Epoch 0 |Statistics of the bitwidth distribution:
111
+ Epoch 0 |+--------------+---------------------+--------------------+--------------------+
112
+ Epoch 0 || Num bits (N) | N-bits WQs / Placed | N-bits AQs / | N-bits Qs / Placed |
113
+ Epoch 0 || | WQs | Placed AQs | Qs |
114
+ Epoch 0 |+==============+=====================+====================+====================+
115
+ Epoch 0 || 8 | 100.00 % (38 / 38) | 100.00 % (50 / 50) | 100.00 % (88 / 88) |
116
+ Epoch 0 |+--------------+---------------------+--------------------+--------------------+
117
+ WARNING:nncf:You are setting `forward` on an NNCF-processed model object.
118
+ NNCF relies on custom-wrapping the `forward` call in order to function properly.
119
+ Arbitrary adjustments to the forward function on an NNCFNetwork object have undefined behavior.
120
+ If you need to replace the underlying forward function of the original model so that NNCF should be using that instead of the original forward function that NNCF saved during the compressed model creation, you can do this by calling:
121
+ model.nncf.set_original_unbound_forward(fn)
122
+ if `fn` has an unbound 0-th `self` argument, or
123
+ with model.nncf.temporary_bound_original_forward(fn): ...
124
+ if `fn` already had 0-th `self` argument bound or never had it in the first place.
125
+ WARNING:nncf:You are setting `forward` on an NNCF-processed model object.
126
+ NNCF relies on custom-wrapping the `forward` call in order to function properly.
127
+ Arbitrary adjustments to the forward function on an NNCFNetwork object have undefined behavior.
128
+ If you need to replace the underlying forward function of the original model so that NNCF should be using that instead of the original forward function that NNCF saved during the compressed model creation, you can do this by calling:
129
+ model.nncf.set_original_unbound_forward(fn)
130
+ if `fn` has an unbound 0-th `self` argument, or
131
+ with model.nncf.temporary_bound_original_forward(fn): ...
132
+ if `fn` already had 0-th `self` argument bound or never had it in the first place.
openvino_config.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "compression": {
3
+ "algorithm": "quantization",
4
+ "export_to_onnx_standard_ops": false,
5
+ "ignored_scopes": [
6
+ "{re}.*Embedding.*",
7
+ "{re}.*add___.*",
8
+ "{re}.*layer_norm_.*",
9
+ "{re}.*matmul_1",
10
+ "{re}.*__truediv__.*"
11
+ ],
12
+ "initializer": {
13
+ "batchnorm_adaptation": {
14
+ "num_bn_adaptation_samples": 0
15
+ },
16
+ "range": {
17
+ "num_init_samples": 300,
18
+ "type": "mean_min_max"
19
+ }
20
+ },
21
+ "overflow_fix": "disable",
22
+ "preset": "mixed",
23
+ "scope_overrides": {
24
+ "activations": {
25
+ "{re}.*matmul_0": {
26
+ "mode": "symmetric"
27
+ }
28
+ }
29
+ }
30
+ },
31
+ "input_info": [
32
+ {
33
+ "keyword": "input_ids",
34
+ "sample_size": [
35
+ 8,
36
+ 56
37
+ ],
38
+ "type": "long"
39
+ },
40
+ {
41
+ "keyword": "token_type_ids",
42
+ "sample_size": [
43
+ 8,
44
+ 56
45
+ ],
46
+ "type": "long"
47
+ },
48
+ {
49
+ "keyword": "attention_mask",
50
+ "sample_size": [
51
+ 8,
52
+ 56
53
+ ],
54
+ "type": "long"
55
+ }
56
+ ],
57
+ "optimum_version": "1.14.1",
58
+ "save_onnx_model": false,
59
+ "transformers_version": "4.35.2"
60
+ }
openvino_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cececd27465ec44366c049c2cf0fdae43919d51eb664a80b8ba5a99b5f6ff3bb
3
+ size 138739260
openvino_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
original_graph.dot ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:142dbe5ab4b041b46c733e49e754bfe536fbac9155e5f5772f89a3ba008a7c8a
3
- size 267862062
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9714306a601a5684ca4e944f902b17302cd9c4b25181704adf26efbf008cee23
3
+ size 268184942
runs/Nov18_10-27-10_1d5d6d420ef6/events.out.tfevents.1700303301.1d5d6d420ef6.278.30 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac92d762c8a0af0b2386ba7e54e70a51212b6c964489c8834b35c1f720d15da5
3
+ size 4574
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4a1c7e76b5ded3ee7548593ad5aa7f2b3f20c00381ded97317ed1671fdd75f79
3
  size 4600
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a946ae40b84094d79d9657770c80899b58573ab90fae3025de9580edc1380fc6
3
  size 4600