--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: wav2vec2-base-music_genre_classifier-g3b results: [] --- # wav2vec2-base-music_genre_classifier-g3b This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co./facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3709 - Accuracy: 0.7380 - F1: 0.7356 - Recall: 0.7395 - Precision: 0.7400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 2.3444 | 1.0 | 276 | 2.2888 | 0.3618 | 0.2663 | 0.3495 | 0.2702 | | 1.946 | 2.0 | 552 | 1.7679 | 0.4880 | 0.4277 | 0.4778 | 0.5072 | | 1.6394 | 3.0 | 828 | 1.4655 | 0.5565 | 0.4966 | 0.5463 | 0.5089 | | 1.2346 | 4.0 | 1104 | 1.3279 | 0.5974 | 0.5654 | 0.5937 | 0.6372 | | 0.8945 | 5.0 | 1380 | 1.2718 | 0.6226 | 0.6021 | 0.6178 | 0.6240 | | 0.7872 | 6.0 | 1656 | 1.1310 | 0.6671 | 0.6594 | 0.6691 | 0.6826 | | 0.5562 | 7.0 | 1932 | 1.1743 | 0.6743 | 0.6677 | 0.6730 | 0.6857 | | 0.65 | 8.0 | 2208 | 1.0722 | 0.7163 | 0.7178 | 0.7179 | 0.7394 | | 0.3239 | 9.0 | 2484 | 1.1846 | 0.6899 | 0.6863 | 0.6909 | 0.6997 | | 0.3885 | 10.0 | 2760 | 1.2243 | 0.7031 | 0.6994 | 0.7072 | 0.7126 | | 0.1529 | 11.0 | 3036 | 1.2539 | 0.7175 | 0.7193 | 0.7195 | 0.7245 | | 0.4527 | 12.0 | 3312 | 1.3231 | 0.7188 | 0.7116 | 0.7182 | 0.7220 | | 0.324 | 13.0 | 3588 | 1.3190 | 0.7344 | 0.7360 | 0.7368 | 0.7409 | | 0.0277 | 14.0 | 3864 | 1.3623 | 0.7356 | 0.7340 | 0.7370 | 0.7407 | | 0.0276 | 15.0 | 4140 | 1.3709 | 0.7380 | 0.7356 | 0.7395 | 0.7400 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3