Model save
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: facebook/wav2vec2-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
- recall
|
11 |
+
- precision
|
12 |
+
model-index:
|
13 |
+
- name: wav2vec2-base-music_genre_classifier-g3b
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# wav2vec2-base-music_genre_classifier-g3b
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 1.3709
|
25 |
+
- Accuracy: 0.7380
|
26 |
+
- F1: 0.7356
|
27 |
+
- Recall: 0.7395
|
28 |
+
- Precision: 0.7400
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 3e-05
|
48 |
+
- train_batch_size: 12
|
49 |
+
- eval_batch_size: 12
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_ratio: 0.1
|
54 |
+
- num_epochs: 15
|
55 |
+
- mixed_precision_training: Native AMP
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
|
61 |
+
| 2.3444 | 1.0 | 276 | 2.2888 | 0.3618 | 0.2663 | 0.3495 | 0.2702 |
|
62 |
+
| 1.946 | 2.0 | 552 | 1.7679 | 0.4880 | 0.4277 | 0.4778 | 0.5072 |
|
63 |
+
| 1.6394 | 3.0 | 828 | 1.4655 | 0.5565 | 0.4966 | 0.5463 | 0.5089 |
|
64 |
+
| 1.2346 | 4.0 | 1104 | 1.3279 | 0.5974 | 0.5654 | 0.5937 | 0.6372 |
|
65 |
+
| 0.8945 | 5.0 | 1380 | 1.2718 | 0.6226 | 0.6021 | 0.6178 | 0.6240 |
|
66 |
+
| 0.7872 | 6.0 | 1656 | 1.1310 | 0.6671 | 0.6594 | 0.6691 | 0.6826 |
|
67 |
+
| 0.5562 | 7.0 | 1932 | 1.1743 | 0.6743 | 0.6677 | 0.6730 | 0.6857 |
|
68 |
+
| 0.65 | 8.0 | 2208 | 1.0722 | 0.7163 | 0.7178 | 0.7179 | 0.7394 |
|
69 |
+
| 0.3239 | 9.0 | 2484 | 1.1846 | 0.6899 | 0.6863 | 0.6909 | 0.6997 |
|
70 |
+
| 0.3885 | 10.0 | 2760 | 1.2243 | 0.7031 | 0.6994 | 0.7072 | 0.7126 |
|
71 |
+
| 0.1529 | 11.0 | 3036 | 1.2539 | 0.7175 | 0.7193 | 0.7195 | 0.7245 |
|
72 |
+
| 0.4527 | 12.0 | 3312 | 1.3231 | 0.7188 | 0.7116 | 0.7182 | 0.7220 |
|
73 |
+
| 0.324 | 13.0 | 3588 | 1.3190 | 0.7344 | 0.7360 | 0.7368 | 0.7409 |
|
74 |
+
| 0.0277 | 14.0 | 3864 | 1.3623 | 0.7356 | 0.7340 | 0.7370 | 0.7407 |
|
75 |
+
| 0.0276 | 15.0 | 4140 | 1.3709 | 0.7380 | 0.7356 | 0.7395 | 0.7400 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.46.2
|
81 |
+
- Pytorch 2.5.0+cu121
|
82 |
+
- Datasets 3.1.0
|
83 |
+
- Tokenizers 0.20.3
|
runs/Nov14_19-14-19_08f6c421e555/events.out.tfevents.1731616401.08f6c421e555.233.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b6ebabe2d27e445fb97d046cd6bbf34c58fe482edd4c369767d90bcdc6e9387
|
3 |
+
size 560
|