Ubuntu commited on
Commit
2251ca6
·
1 Parent(s): 057d1af

Init training set

Browse files

Signed-off-by: Ubuntu <[email protected]>

.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.gguf filter=lfs diff=lfs merge=lfs -text
checkpoint-10.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8763eeabb981087b047c77c4a52c501b4086abc77c2a96804b6bbf515a760e32
3
+ size 126642016
checkpoint-100.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f61e848bffead2406562a986cca238840389436c32b6b3812d2059c2440facd
3
+ size 126641984
checkpoint-110.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cffbe8659aa7c460cb005a6374e4b12ffdff6d164af0395d3019d063d4b9fc5
3
+ size 126641984
checkpoint-120.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2dcdcb27147bfe9c911d92868fb500fb594785fce8086e37a2f70ec78741d0e
3
+ size 126641984
checkpoint-130.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a327e7a6499134812a400e64aace54b81035b086c55e981290b1004eb0bcf21c
3
+ size 126641984
checkpoint-140.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e4ca211fa44469783b0d21ef61591757492f6e2f40beacbc156fb6a84df58ca
3
+ size 126642016
checkpoint-150.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a223540a6b22af8cb428d069bf71916c74027f90ec0334050595c55761ea067d
3
+ size 126642016
checkpoint-160.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2b94489b39bb11b27cc94db3e420bf0afc61aaf6f280d65da9b6bc598698263
3
+ size 126642016
checkpoint-170.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49d6f8cffd7a6018aa6484bd75fbc404be56286e364afb0e5c9c2379c14c37fd
3
+ size 126642016
checkpoint-180.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fc4c7a053126ce6c3f3c8ee84b9e99770185966ecc78006c7f2b247a3cbe6a2
3
+ size 126642016
checkpoint-190.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d97522da22badd781e357425309765a22bd864c82943a07b5b13dc1d35891c1e
3
+ size 126642016
checkpoint-20.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b4f5908e39d55169ffe3912d93d497601ed3b489bea085ee97ce8aa09cd8de1
3
+ size 126642016
checkpoint-200.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c8385e96ae18ecbee194036e31dcba4492665e9c9c3af9aee5e051327bf6373
3
+ size 126642016
checkpoint-210.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b54910ada43098a6710dc46aa9f0e24f0c8d7f403d78a48aa384b9daeac412bd
3
+ size 126642016
checkpoint-220.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b32e4f961f152b119b797997e15fc84689289ea590776156e890671218f6e26
3
+ size 126642016
checkpoint-230.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:878a4d0d6f7b4f5cd053a8ade6a306e2729899251f315214b5c0bdefabdbb2ae
3
+ size 126642016
checkpoint-240.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8e4a903e35d4bbceb7385fe6eb3dcbad40cf5a72570b172ff3b7ff5fc997105
3
+ size 126642016
checkpoint-250.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2db30c9c2528f85efabb29dd21e36612e0aafa0e9ecfa0df9e0b00217f4c193a
3
+ size 126642016
checkpoint-256.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f88f390f28f880584ca91b046f3bdb40f23aacbb5e97daf9412f908cf0264977
3
+ size 126641984
checkpoint-30.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:128da8c7eac3f42413913595fdfa471c8af08ae96547a48634398765d9e68fe7
3
+ size 126641984
checkpoint-40.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4861334088d7d630f8034abbf777957a5ecf41e1f0a1fbcbf4d131216e01e02f
3
+ size 126641984
checkpoint-50.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dad8e69f283e02cba46e630b17834cc1518ba7107a89acf588bb4a68cb9ee44
3
+ size 126642016
checkpoint-60.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35f49e3f39028021eb54cc412d787b41e7ae9080eed6ee93fc909f4b56f37b6c
3
+ size 126642016
checkpoint-70.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ae0da577f29517bd6408631d52ea89d160dd8084df9c321db902a203fde62c8
3
+ size 126642016
checkpoint-80.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:322f6b9946d77a2d5da04474bb78b40e8451e8709278fda1c10439bd223d9c8e
3
+ size 126642016
checkpoint-90.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:747a038234163b1a96417b12f0c13737d1a42935707f5a82b0cb89e85f4cf3b5
3
+ size 126642016
checkpoint-LATEST.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f88f390f28f880584ca91b046f3bdb40f23aacbb5e97daf9412f908cf0264977
3
+ size 126641984
llama-2-7b-ft-q5_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b256bf5d522fc1209e9e58fc4af1beadda8855a7647f6daa887c41c70a9ab0a
3
+ size 4783156800
llama-2-7b-q5_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c61b678f868be0ca48fa4fa5a8f37e2638e1aae2618a271c67a3c2fb7be55aac
3
+ size 4783156800
lora.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90cd9e7c5600b8c0c43d9c4af0ff6a2908c0956f067f3d2908fc44efe63bd909
3
+ size 42234240
nohup.out ADDED
@@ -0,0 +1,772 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_init_cublas: found 1 CUDA devices:
2
+ Device 0: NVIDIA A10G, compute capability 8.6
3
+ llama_model_loader: loaded meta data with 16 key-value pairs and 291 tensors from llama-2-7b-q5_k_m.gguf (version GGUF V2 (latest))
4
+ llama_model_loader: - tensor 0: token_embd.weight q5_K [ 4096, 32000, 1, 1 ]
5
+ llama_model_loader: - tensor 1: output_norm.weight f32 [ 4096, 1, 1, 1 ]
6
+ llama_model_loader: - tensor 2: output.weight q6_K [ 4096, 32000, 1, 1 ]
7
+ llama_model_loader: - tensor 3: blk.0.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
8
+ llama_model_loader: - tensor 4: blk.0.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
9
+ llama_model_loader: - tensor 5: blk.0.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
10
+ llama_model_loader: - tensor 6: blk.0.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
11
+ llama_model_loader: - tensor 7: blk.0.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
12
+ llama_model_loader: - tensor 8: blk.0.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
13
+ llama_model_loader: - tensor 9: blk.0.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
14
+ llama_model_loader: - tensor 10: blk.0.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
15
+ llama_model_loader: - tensor 11: blk.0.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
16
+ llama_model_loader: - tensor 12: blk.1.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
17
+ llama_model_loader: - tensor 13: blk.1.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
18
+ llama_model_loader: - tensor 14: blk.1.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
19
+ llama_model_loader: - tensor 15: blk.1.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
20
+ llama_model_loader: - tensor 16: blk.1.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
21
+ llama_model_loader: - tensor 17: blk.1.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
22
+ llama_model_loader: - tensor 18: blk.1.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
23
+ llama_model_loader: - tensor 19: blk.1.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
24
+ llama_model_loader: - tensor 20: blk.1.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
25
+ llama_model_loader: - tensor 21: blk.2.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
26
+ llama_model_loader: - tensor 22: blk.2.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
27
+ llama_model_loader: - tensor 23: blk.2.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
28
+ llama_model_loader: - tensor 24: blk.2.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
29
+ llama_model_loader: - tensor 25: blk.2.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
30
+ llama_model_loader: - tensor 26: blk.2.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
31
+ llama_model_loader: - tensor 27: blk.2.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
32
+ llama_model_loader: - tensor 28: blk.2.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
33
+ llama_model_loader: - tensor 29: blk.2.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
34
+ llama_model_loader: - tensor 30: blk.3.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
35
+ llama_model_loader: - tensor 31: blk.3.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
36
+ llama_model_loader: - tensor 32: blk.3.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
37
+ llama_model_loader: - tensor 33: blk.3.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
38
+ llama_model_loader: - tensor 34: blk.3.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
39
+ llama_model_loader: - tensor 35: blk.3.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
40
+ llama_model_loader: - tensor 36: blk.3.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
41
+ llama_model_loader: - tensor 37: blk.3.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
42
+ llama_model_loader: - tensor 38: blk.3.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
43
+ llama_model_loader: - tensor 39: blk.4.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
44
+ llama_model_loader: - tensor 40: blk.4.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
45
+ llama_model_loader: - tensor 41: blk.4.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
46
+ llama_model_loader: - tensor 42: blk.4.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
47
+ llama_model_loader: - tensor 43: blk.4.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
48
+ llama_model_loader: - tensor 44: blk.4.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
49
+ llama_model_loader: - tensor 45: blk.4.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
50
+ llama_model_loader: - tensor 46: blk.4.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
51
+ llama_model_loader: - tensor 47: blk.4.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
52
+ llama_model_loader: - tensor 48: blk.5.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
53
+ llama_model_loader: - tensor 49: blk.5.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
54
+ llama_model_loader: - tensor 50: blk.5.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
55
+ llama_model_loader: - tensor 51: blk.5.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
56
+ llama_model_loader: - tensor 52: blk.5.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
57
+ llama_model_loader: - tensor 53: blk.5.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
58
+ llama_model_loader: - tensor 54: blk.5.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
59
+ llama_model_loader: - tensor 55: blk.5.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
60
+ llama_model_loader: - tensor 56: blk.5.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
61
+ llama_model_loader: - tensor 57: blk.6.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
62
+ llama_model_loader: - tensor 58: blk.6.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
63
+ llama_model_loader: - tensor 59: blk.6.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
64
+ llama_model_loader: - tensor 60: blk.6.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
65
+ llama_model_loader: - tensor 61: blk.6.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
66
+ llama_model_loader: - tensor 62: blk.6.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
67
+ llama_model_loader: - tensor 63: blk.6.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
68
+ llama_model_loader: - tensor 64: blk.6.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
69
+ llama_model_loader: - tensor 65: blk.6.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
70
+ llama_model_loader: - tensor 66: blk.7.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
71
+ llama_model_loader: - tensor 67: blk.7.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
72
+ llama_model_loader: - tensor 68: blk.7.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
73
+ llama_model_loader: - tensor 69: blk.7.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
74
+ llama_model_loader: - tensor 70: blk.7.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
75
+ llama_model_loader: - tensor 71: blk.7.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
76
+ llama_model_loader: - tensor 72: blk.7.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
77
+ llama_model_loader: - tensor 73: blk.7.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
78
+ llama_model_loader: - tensor 74: blk.7.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
79
+ llama_model_loader: - tensor 75: blk.8.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
80
+ llama_model_loader: - tensor 76: blk.8.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
81
+ llama_model_loader: - tensor 77: blk.8.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
82
+ llama_model_loader: - tensor 78: blk.8.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
83
+ llama_model_loader: - tensor 79: blk.8.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
84
+ llama_model_loader: - tensor 80: blk.8.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
85
+ llama_model_loader: - tensor 81: blk.8.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
86
+ llama_model_loader: - tensor 82: blk.8.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
87
+ llama_model_loader: - tensor 83: blk.8.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
88
+ llama_model_loader: - tensor 84: blk.9.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
89
+ llama_model_loader: - tensor 85: blk.9.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
90
+ llama_model_loader: - tensor 86: blk.9.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
91
+ llama_model_loader: - tensor 87: blk.9.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
92
+ llama_model_loader: - tensor 88: blk.9.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
93
+ llama_model_loader: - tensor 89: blk.9.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
94
+ llama_model_loader: - tensor 90: blk.9.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
95
+ llama_model_loader: - tensor 91: blk.9.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
96
+ llama_model_loader: - tensor 92: blk.9.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
97
+ llama_model_loader: - tensor 93: blk.10.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
98
+ llama_model_loader: - tensor 94: blk.10.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
99
+ llama_model_loader: - tensor 95: blk.10.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
100
+ llama_model_loader: - tensor 96: blk.10.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
101
+ llama_model_loader: - tensor 97: blk.10.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
102
+ llama_model_loader: - tensor 98: blk.10.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
103
+ llama_model_loader: - tensor 99: blk.10.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
104
+ llama_model_loader: - tensor 100: blk.10.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
105
+ llama_model_loader: - tensor 101: blk.10.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
106
+ llama_model_loader: - tensor 102: blk.11.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
107
+ llama_model_loader: - tensor 103: blk.11.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
108
+ llama_model_loader: - tensor 104: blk.11.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
109
+ llama_model_loader: - tensor 105: blk.11.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
110
+ llama_model_loader: - tensor 106: blk.11.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
111
+ llama_model_loader: - tensor 107: blk.11.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
112
+ llama_model_loader: - tensor 108: blk.11.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
113
+ llama_model_loader: - tensor 109: blk.11.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
114
+ llama_model_loader: - tensor 110: blk.11.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
115
+ llama_model_loader: - tensor 111: blk.12.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
116
+ llama_model_loader: - tensor 112: blk.12.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
117
+ llama_model_loader: - tensor 113: blk.12.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
118
+ llama_model_loader: - tensor 114: blk.12.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
119
+ llama_model_loader: - tensor 115: blk.12.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
120
+ llama_model_loader: - tensor 116: blk.12.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
121
+ llama_model_loader: - tensor 117: blk.12.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
122
+ llama_model_loader: - tensor 118: blk.12.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
123
+ llama_model_loader: - tensor 119: blk.12.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
124
+ llama_model_loader: - tensor 120: blk.13.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
125
+ llama_model_loader: - tensor 121: blk.13.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
126
+ llama_model_loader: - tensor 122: blk.13.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
127
+ llama_model_loader: - tensor 123: blk.13.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
128
+ llama_model_loader: - tensor 124: blk.13.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
129
+ llama_model_loader: - tensor 125: blk.13.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
130
+ llama_model_loader: - tensor 126: blk.13.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
131
+ llama_model_loader: - tensor 127: blk.13.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
132
+ llama_model_loader: - tensor 128: blk.13.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
133
+ llama_model_loader: - tensor 129: blk.14.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
134
+ llama_model_loader: - tensor 130: blk.14.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
135
+ llama_model_loader: - tensor 131: blk.14.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
136
+ llama_model_loader: - tensor 132: blk.14.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
137
+ llama_model_loader: - tensor 133: blk.14.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
138
+ llama_model_loader: - tensor 134: blk.14.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
139
+ llama_model_loader: - tensor 135: blk.14.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
140
+ llama_model_loader: - tensor 136: blk.14.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
141
+ llama_model_loader: - tensor 137: blk.14.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
142
+ llama_model_loader: - tensor 138: blk.15.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
143
+ llama_model_loader: - tensor 139: blk.15.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
144
+ llama_model_loader: - tensor 140: blk.15.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
145
+ llama_model_loader: - tensor 141: blk.15.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
146
+ llama_model_loader: - tensor 142: blk.15.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
147
+ llama_model_loader: - tensor 143: blk.15.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
148
+ llama_model_loader: - tensor 144: blk.15.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
149
+ llama_model_loader: - tensor 145: blk.15.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
150
+ llama_model_loader: - tensor 146: blk.15.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
151
+ llama_model_loader: - tensor 147: blk.16.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
152
+ llama_model_loader: - tensor 148: blk.16.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
153
+ llama_model_loader: - tensor 149: blk.16.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
154
+ llama_model_loader: - tensor 150: blk.16.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
155
+ llama_model_loader: - tensor 151: blk.16.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
156
+ llama_model_loader: - tensor 152: blk.16.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
157
+ llama_model_loader: - tensor 153: blk.16.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
158
+ llama_model_loader: - tensor 154: blk.16.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
159
+ llama_model_loader: - tensor 155: blk.16.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
160
+ llama_model_loader: - tensor 156: blk.17.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
161
+ llama_model_loader: - tensor 157: blk.17.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
162
+ llama_model_loader: - tensor 158: blk.17.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
163
+ llama_model_loader: - tensor 159: blk.17.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
164
+ llama_model_loader: - tensor 160: blk.17.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
165
+ llama_model_loader: - tensor 161: blk.17.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
166
+ llama_model_loader: - tensor 162: blk.17.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
167
+ llama_model_loader: - tensor 163: blk.17.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
168
+ llama_model_loader: - tensor 164: blk.17.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
169
+ llama_model_loader: - tensor 165: blk.18.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
170
+ llama_model_loader: - tensor 166: blk.18.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
171
+ llama_model_loader: - tensor 167: blk.18.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
172
+ llama_model_loader: - tensor 168: blk.18.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
173
+ llama_model_loader: - tensor 169: blk.18.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
174
+ llama_model_loader: - tensor 170: blk.18.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
175
+ llama_model_loader: - tensor 171: blk.18.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
176
+ llama_model_loader: - tensor 172: blk.18.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
177
+ llama_model_loader: - tensor 173: blk.18.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
178
+ llama_model_loader: - tensor 174: blk.19.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
179
+ llama_model_loader: - tensor 175: blk.19.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
180
+ llama_model_loader: - tensor 176: blk.19.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
181
+ llama_model_loader: - tensor 177: blk.19.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
182
+ llama_model_loader: - tensor 178: blk.19.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
183
+ llama_model_loader: - tensor 179: blk.19.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
184
+ llama_model_loader: - tensor 180: blk.19.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
185
+ llama_model_loader: - tensor 181: blk.19.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
186
+ llama_model_loader: - tensor 182: blk.19.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
187
+ llama_model_loader: - tensor 183: blk.20.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
188
+ llama_model_loader: - tensor 184: blk.20.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
189
+ llama_model_loader: - tensor 185: blk.20.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
190
+ llama_model_loader: - tensor 186: blk.20.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
191
+ llama_model_loader: - tensor 187: blk.20.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
192
+ llama_model_loader: - tensor 188: blk.20.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
193
+ llama_model_loader: - tensor 189: blk.20.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
194
+ llama_model_loader: - tensor 190: blk.20.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
195
+ llama_model_loader: - tensor 191: blk.20.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
196
+ llama_model_loader: - tensor 192: blk.21.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
197
+ llama_model_loader: - tensor 193: blk.21.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
198
+ llama_model_loader: - tensor 194: blk.21.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
199
+ llama_model_loader: - tensor 195: blk.21.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
200
+ llama_model_loader: - tensor 196: blk.21.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
201
+ llama_model_loader: - tensor 197: blk.21.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
202
+ llama_model_loader: - tensor 198: blk.21.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
203
+ llama_model_loader: - tensor 199: blk.21.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
204
+ llama_model_loader: - tensor 200: blk.21.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
205
+ llama_model_loader: - tensor 201: blk.22.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
206
+ llama_model_loader: - tensor 202: blk.22.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
207
+ llama_model_loader: - tensor 203: blk.22.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
208
+ llama_model_loader: - tensor 204: blk.22.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
209
+ llama_model_loader: - tensor 205: blk.22.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
210
+ llama_model_loader: - tensor 206: blk.22.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
211
+ llama_model_loader: - tensor 207: blk.22.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
212
+ llama_model_loader: - tensor 208: blk.22.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
213
+ llama_model_loader: - tensor 209: blk.22.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
214
+ llama_model_loader: - tensor 210: blk.23.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
215
+ llama_model_loader: - tensor 211: blk.23.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
216
+ llama_model_loader: - tensor 212: blk.23.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
217
+ llama_model_loader: - tensor 213: blk.23.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
218
+ llama_model_loader: - tensor 214: blk.23.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
219
+ llama_model_loader: - tensor 215: blk.23.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
220
+ llama_model_loader: - tensor 216: blk.23.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
221
+ llama_model_loader: - tensor 217: blk.23.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
222
+ llama_model_loader: - tensor 218: blk.23.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
223
+ llama_model_loader: - tensor 219: blk.24.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
224
+ llama_model_loader: - tensor 220: blk.24.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
225
+ llama_model_loader: - tensor 221: blk.24.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
226
+ llama_model_loader: - tensor 222: blk.24.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
227
+ llama_model_loader: - tensor 223: blk.24.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
228
+ llama_model_loader: - tensor 224: blk.24.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
229
+ llama_model_loader: - tensor 225: blk.24.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
230
+ llama_model_loader: - tensor 226: blk.24.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
231
+ llama_model_loader: - tensor 227: blk.24.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
232
+ llama_model_loader: - tensor 228: blk.25.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
233
+ llama_model_loader: - tensor 229: blk.25.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
234
+ llama_model_loader: - tensor 230: blk.25.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
235
+ llama_model_loader: - tensor 231: blk.25.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
236
+ llama_model_loader: - tensor 232: blk.25.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
237
+ llama_model_loader: - tensor 233: blk.25.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
238
+ llama_model_loader: - tensor 234: blk.25.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
239
+ llama_model_loader: - tensor 235: blk.25.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
240
+ llama_model_loader: - tensor 236: blk.25.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
241
+ llama_model_loader: - tensor 237: blk.26.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
242
+ llama_model_loader: - tensor 238: blk.26.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
243
+ llama_model_loader: - tensor 239: blk.26.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
244
+ llama_model_loader: - tensor 240: blk.26.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
245
+ llama_model_loader: - tensor 241: blk.26.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
246
+ llama_model_loader: - tensor 242: blk.26.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
247
+ llama_model_loader: - tensor 243: blk.26.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
248
+ llama_model_loader: - tensor 244: blk.26.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
249
+ llama_model_loader: - tensor 245: blk.26.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
250
+ llama_model_loader: - tensor 246: blk.27.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
251
+ llama_model_loader: - tensor 247: blk.27.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
252
+ llama_model_loader: - tensor 248: blk.27.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
253
+ llama_model_loader: - tensor 249: blk.27.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
254
+ llama_model_loader: - tensor 250: blk.27.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
255
+ llama_model_loader: - tensor 251: blk.27.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
256
+ llama_model_loader: - tensor 252: blk.27.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
257
+ llama_model_loader: - tensor 253: blk.27.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
258
+ llama_model_loader: - tensor 254: blk.27.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
259
+ llama_model_loader: - tensor 255: blk.28.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
260
+ llama_model_loader: - tensor 256: blk.28.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
261
+ llama_model_loader: - tensor 257: blk.28.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
262
+ llama_model_loader: - tensor 258: blk.28.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
263
+ llama_model_loader: - tensor 259: blk.28.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
264
+ llama_model_loader: - tensor 260: blk.28.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
265
+ llama_model_loader: - tensor 261: blk.28.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
266
+ llama_model_loader: - tensor 262: blk.28.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
267
+ llama_model_loader: - tensor 263: blk.28.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
268
+ llama_model_loader: - tensor 264: blk.29.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
269
+ llama_model_loader: - tensor 265: blk.29.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
270
+ llama_model_loader: - tensor 266: blk.29.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
271
+ llama_model_loader: - tensor 267: blk.29.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
272
+ llama_model_loader: - tensor 268: blk.29.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
273
+ llama_model_loader: - tensor 269: blk.29.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
274
+ llama_model_loader: - tensor 270: blk.29.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
275
+ llama_model_loader: - tensor 271: blk.29.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
276
+ llama_model_loader: - tensor 272: blk.29.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
277
+ llama_model_loader: - tensor 273: blk.30.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
278
+ llama_model_loader: - tensor 274: blk.30.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
279
+ llama_model_loader: - tensor 275: blk.30.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
280
+ llama_model_loader: - tensor 276: blk.30.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
281
+ llama_model_loader: - tensor 277: blk.30.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
282
+ llama_model_loader: - tensor 278: blk.30.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
283
+ llama_model_loader: - tensor 279: blk.30.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
284
+ llama_model_loader: - tensor 280: blk.30.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
285
+ llama_model_loader: - tensor 281: blk.30.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
286
+ llama_model_loader: - tensor 282: blk.31.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
287
+ llama_model_loader: - tensor 283: blk.31.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
288
+ llama_model_loader: - tensor 284: blk.31.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
289
+ llama_model_loader: - tensor 285: blk.31.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
290
+ llama_model_loader: - tensor 286: blk.31.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
291
+ llama_model_loader: - tensor 287: blk.31.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
292
+ llama_model_loader: - tensor 288: blk.31.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
293
+ llama_model_loader: - tensor 289: blk.31.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
294
+ llama_model_loader: - tensor 290: blk.31.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
295
+ llama_model_loader: - kv 0: general.architecture str
296
+ llama_model_loader: - kv 1: general.name str
297
+ llama_model_loader: - kv 2: llama.context_length u32
298
+ llama_model_loader: - kv 3: llama.embedding_length u32
299
+ llama_model_loader: - kv 4: llama.block_count u32
300
+ llama_model_loader: - kv 5: llama.feed_forward_length u32
301
+ llama_model_loader: - kv 6: llama.rope.dimension_count u32
302
+ llama_model_loader: - kv 7: llama.attention.head_count u32
303
+ llama_model_loader: - kv 8: llama.attention.head_count_kv u32
304
+ llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32
305
+ llama_model_loader: - kv 10: general.file_type u32
306
+ llama_model_loader: - kv 11: tokenizer.ggml.model str
307
+ llama_model_loader: - kv 12: tokenizer.ggml.tokens arr
308
+ llama_model_loader: - kv 13: tokenizer.ggml.scores arr
309
+ llama_model_loader: - kv 14: tokenizer.ggml.token_type arr
310
+ llama_model_loader: - kv 15: general.quantization_version u32
311
+ llama_model_loader: - type f32: 65 tensors
312
+ llama_model_loader: - type q5_K: 193 tensors
313
+ llama_model_loader: - type q6_K: 33 tensors
314
+ llm_load_print_meta: format = GGUF V2 (latest)
315
+ llm_load_print_meta: arch = llama
316
+ llm_load_print_meta: vocab type = SPM
317
+ llm_load_print_meta: n_vocab = 32000
318
+ llm_load_print_meta: n_merges = 0
319
+ llm_load_print_meta: n_ctx_train = 4096
320
+ llm_load_print_meta: n_embd = 4096
321
+ llm_load_print_meta: n_head = 32
322
+ llm_load_print_meta: n_head_kv = 32
323
+ llm_load_print_meta: n_layer = 32
324
+ llm_load_print_meta: n_rot = 128
325
+ llm_load_print_meta: n_gqa = 1
326
+ llm_load_print_meta: f_norm_eps = 0.0e+00
327
+ llm_load_print_meta: f_norm_rms_eps = 1.0e-05
328
+ llm_load_print_meta: f_clamp_kqv = 0.0e+00
329
+ llm_load_print_meta: f_max_alibi_bias = 0.0e+00
330
+ llm_load_print_meta: n_ff = 11008
331
+ llm_load_print_meta: freq_base_train = 10000.0
332
+ llm_load_print_meta: freq_scale_train = 1
333
+ llm_load_print_meta: model type = 7B
334
+ llm_load_print_meta: model ftype = mostly Q5_K - Medium
335
+ llm_load_print_meta: model params = 6.74 B
336
+ llm_load_print_meta: model size = 4.45 GiB (5.68 BPW)
337
+ llm_load_print_meta: general.name = LLaMA v2
338
+ llm_load_print_meta: BOS token = 1 '<s>'
339
+ llm_load_print_meta: EOS token = 2 '</s>'
340
+ llm_load_print_meta: UNK token = 0 '<unk>'
341
+ llm_load_print_meta: LF token = 13 '<0x0A>'
342
+ llm_load_tensors: ggml ctx size = 0.10 MB
343
+ llm_load_tensors: using CUDA for GPU acceleration
344
+ llm_load_tensors: mem required = 4560.96 MB
345
+ llm_load_tensors: offloading 0 repeating layers to GPU
346
+ llm_load_tensors: offloaded 0/35 layers to GPU
347
+ llm_load_tensors: VRAM used: 0.00 MB
348
+ ..................................................................................................
349
+ llama_new_context_with_model: n_ctx = 512
350
+ llama_new_context_with_model: freq_base = 10000.0
351
+ llama_new_context_with_model: freq_scale = 1
352
+ llama_new_context_with_model: kv self size = 256.00 MB
353
+ llama_new_context_with_model: compute buffer total size = 76.63 MB
354
+ llama_new_context_with_model: VRAM scratch buffer: 70.50 MB
355
+ llama_new_context_with_model: total VRAM used: 70.50 MB (model: 0.00 MB, context: 70.50 MB)
356
+ main: seed: 1699909515
357
+ main: model base = 'llama-2-7b-q5_k_m.gguf'
358
+ main: init model
359
+ print_params: n_vocab: 32000
360
+ print_params: n_ctx: 128
361
+ print_params: n_embd: 4096
362
+ print_params: n_ff: 11008
363
+ print_params: n_head: 32
364
+ print_params: n_head_kv: 32
365
+ print_params: n_layer: 32
366
+ print_params: norm_rms_eps : 0.000010
367
+ print_params: rope_freq_base : 10000.000000
368
+ print_params: rope_freq_scale : 1.000000
369
+ print_lora_params: n_rank_attention_norm : 1
370
+ print_lora_params: n_rank_wq : 4
371
+ print_lora_params: n_rank_wk : 4
372
+ print_lora_params: n_rank_wv : 4
373
+ print_lora_params: n_rank_wo : 4
374
+ print_lora_params: n_rank_ffn_norm : 1
375
+ print_lora_params: n_rank_w1 : 4
376
+ print_lora_params: n_rank_w2 : 4
377
+ print_lora_params: n_rank_w3 : 4
378
+ print_lora_params: n_rank_tok_embeddings : 4
379
+ print_lora_params: n_rank_norm : 1
380
+ print_lora_params: n_rank_output : 4
381
+ main: total train_iterations 0
382
+ main: seen train_samples 0
383
+ main: seen train_tokens 0
384
+ main: completed train_epochs 0
385
+ main: lora_size = 84807904 bytes (80.9 MB)
386
+ main: opt_size = 126592864 bytes (120.7 MB)
387
+ main: opt iter 0
388
+ main: input_size = 131076128 bytes (125.0 MB)
389
+ main: compute_size = 14064566880 bytes (13413.0 MB)
390
+ main: evaluation order = RIGHT_TO_LEFT
391
+ main: tokenize training data
392
+ tokenize_file: warning: found 2 samples (max length 197) that exceed context length of 128. samples will be cut off.
393
+ tokenize_file: warning: found 176 samples (min length 22) that are shorter than context length of 128.
394
+ tokenize_file: total number of samples: 178
395
+ main: number of training tokens: 7605
396
+ main: number of unique tokens: 868
397
+ main: train data seems to have changed. restarting shuffled epoch.
398
+ main: begin training
399
+ main: work_size = 1024512 bytes (1.0 MB)
400
+ train_opt_callback: iter= 0 sample=1/178 sched=0.000000 loss=0.000000 |->
401
+ train_opt_callback: iter= 1 sample=9/178 sched=0.010000 loss=7.328270 dt=00:22:48 eta=4d 00:57:37 |->
402
+ train_opt_callback: iter= 2 sample=17/178 sched=0.020000 loss=8.033629 dt=00:22:06 eta=3d 21:33:24 |>
403
+ train_opt_callback: iter= 3 sample=25/178 sched=0.030000 loss=7.241049 dt=00:22:01 eta=3d 20:50:38 |-->
404
+ train_opt_callback: iter= 4 sample=33/178 sched=0.040000 loss=7.332203 dt=00:22:01 eta=3d 20:31:55 |->
405
+ train_opt_callback: iter= 5 sample=41/178 sched=0.050000 loss=6.324121 dt=00:22:06 eta=3d 20:28:16 |----------->
406
+ train_opt_callback: iter= 6 sample=49/178 sched=0.060000 loss=6.477211 dt=00:21:48 eta=3d 18:50:01 |---------->
407
+ train_opt_callback: iter= 7 sample=57/178 sched=0.070000 loss=6.291273 dt=00:21:33 eta=3d 17:28:16 |----------->
408
+ train_opt_callback: iter= 8 sample=65/178 sched=0.080000 loss=5.716275 dt=00:21:31 eta=3d 16:58:39 |----------------->
409
+ train_opt_callback: iter= 9 sample=73/178 sched=0.090000 loss=5.227144 dt=00:20:14 eta=3d 11:18:46 |---------------------->
410
+ save_checkpoint_lora_file: saving to checkpoint-10.gguf
411
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
412
+ save_as_llama_lora: saving to lora.bin
413
+ save_as_llama_lora: saving to lora.bin
414
+ train_opt_callback: iter= 10 sample=81/178 sched=0.100000 loss=3.905872 dt=00:20:21 eta=3d 11:29:58 |----------------------------------->
415
+ train_opt_callback: iter= 11 sample=89/178 sched=0.110000 loss=4.364841 dt=00:20:18 eta=3d 10:54:52 |------------------------------->
416
+ train_opt_callback: iter= 12 sample=97/178 sched=0.120000 loss=3.937706 dt=00:19:51 eta=3d 08:45:23 |----------------------------------->
417
+ train_opt_callback: iter= 13 sample=105/178 sched=0.130000 loss=3.677362 dt=00:19:57 eta=3d 08:51:14 |-------------------------------------->
418
+ train_opt_callback: iter= 14 sample=113/178 sched=0.140000 loss=3.055107 dt=00:20:02 eta=3d 08:48:46 |-------------------------------------------->
419
+ train_opt_callback: iter= 15 sample=121/178 sched=0.150000 loss=2.682614 dt=00:19:53 eta=3d 07:51:55 |----------------------------------------------->
420
+ train_opt_callback: iter= 16 sample=129/178 sched=0.160000 loss=2.312799 dt=00:19:23 eta=3d 05:34:55 |--------------------------------------------------->
421
+ train_opt_callback: iter= 17 sample=137/178 sched=0.170000 loss=2.060043 dt=00:19:56 eta=3d 07:25:27 |------------------------------------------------------>
422
+ train_opt_callback: iter= 18 sample=145/178 sched=0.180000 loss=1.396019 dt=00:19:21 eta=3d 04:47:53 |------------------------------------------------------------>
423
+ train_opt_callback: iter= 19 sample=153/178 sched=0.190000 loss=1.361716 dt=00:20:04 eta=3d 07:16:02 |------------------------------------------------------------->
424
+ save_checkpoint_lora_file: saving to checkpoint-20.gguf
425
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
426
+ save_as_llama_lora: saving to lora.bin
427
+ save_as_llama_lora: saving to lora.bin
428
+ train_opt_callback: iter= 20 sample=161/178 sched=0.200000 loss=1.122364 dt=00:20:00 eta=3d 06:42:08 |--------------------------------------------------------------->
429
+ train_opt_callback: iter= 21 sample=169/178 sched=0.210000 loss=0.910218 dt=00:19:20 eta=3d 03:46:44 |----------------------------------------------------------------->
430
+ train_opt_callback: iter= 22 sample=177/178 sched=0.220000 loss=0.621250 dt=00:19:16 eta=3d 03:11:10 |-------------------------------------------------------------------->
431
+ train_opt_callback: reshuffle samples. completed epochs: 1
432
+ train_opt_callback: iter= 23 sample=1/178 sched=0.230000 loss=0.700246 dt=00:19:57 eta=3d 05:28:50 |------------------------------------------------------------------->
433
+ train_opt_callback: iter= 24 sample=9/178 sched=0.240000 loss=0.660297 dt=00:20:08 eta=3d 05:53:15 |-------------------------------------------------------------------->
434
+ train_opt_callback: iter= 25 sample=17/178 sched=0.250000 loss=0.512518 dt=00:19:38 eta=3d 03:38:30 |--------------------------------------------------------------------->
435
+ train_opt_callback: iter= 26 sample=25/178 sched=0.260000 loss=0.517694 dt=00:18:59 eta=3d 00:49:36 |--------------------------------------------------------------------->
436
+ train_opt_callback: iter= 27 sample=33/178 sched=0.270000 loss=0.490942 dt=00:19:42 eta=3d 03:14:53 |--------------------------------------------------------------------->
437
+ train_opt_callback: iter= 28 sample=41/178 sched=0.280000 loss=0.361570 dt=00:19:29 eta=3d 02:04:09 |----------------------------------------------------------------------->
438
+ train_opt_callback: iter= 29 sample=49/178 sched=0.290000 loss=0.203198 dt=00:19:54 eta=3d 03:18:15 |------------------------------------------------------------------------>
439
+ save_checkpoint_lora_file: saving to checkpoint-30.gguf
440
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
441
+ save_as_llama_lora: saving to lora.bin
442
+ save_as_llama_lora: saving to lora.bin
443
+ train_opt_callback: iter= 30 sample=57/178 sched=0.300000 loss=0.292865 dt=00:19:01 eta=2d 23:38:19 |----------------------------------------------------------------------->
444
+ train_opt_callback: iter= 31 sample=65/178 sched=0.310000 loss=0.222613 dt=00:19:52 eta=3d 02:32:32 |------------------------------------------------------------------------>
445
+ train_opt_callback: iter= 32 sample=73/178 sched=0.320000 loss=0.316802 dt=00:19:59 eta=3d 02:38:17 |----------------------------------------------------------------------->
446
+ train_opt_callback: iter= 33 sample=81/178 sched=0.330000 loss=0.215638 dt=00:20:12 eta=3d 03:05:38 |------------------------------------------------------------------------>
447
+ train_opt_callback: iter= 34 sample=89/178 sched=0.340000 loss=0.362912 dt=00:19:53 eta=3d 01:36:27 |----------------------------------------------------------------------->
448
+ train_opt_callback: iter= 35 sample=97/178 sched=0.350000 loss=0.246244 dt=00:19:59 eta=3d 01:37:07 |------------------------------------------------------------------------>
449
+ train_opt_callback: iter= 36 sample=105/178 sched=0.360000 loss=0.497322 dt=00:19:35 eta=2d 23:50:30 |--------------------------------------------------------------------->
450
+ train_opt_callback: iter= 37 sample=113/178 sched=0.370000 loss=0.196620 dt=00:20:08 eta=3d 01:29:45 |------------------------------------------------------------------------>
451
+ train_opt_callback: iter= 38 sample=121/178 sched=0.380000 loss=0.306589 dt=00:20:24 eta=3d 02:07:39 |----------------------------------------------------------------------->
452
+ train_opt_callback: iter= 39 sample=129/178 sched=0.390000 loss=0.328856 dt=00:20:04 eta=3d 00:36:32 |----------------------------------------------------------------------->
453
+ save_checkpoint_lora_file: saving to checkpoint-40.gguf
454
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
455
+ save_as_llama_lora: saving to lora.bin
456
+ save_as_llama_lora: saving to lora.bin
457
+ train_opt_callback: iter= 40 sample=137/178 sched=0.400000 loss=0.170141 dt=00:20:12 eta=3d 00:44:45 |------------------------------------------------------------------------->
458
+ train_opt_callback: iter= 41 sample=145/178 sched=0.410000 loss=0.230015 dt=00:19:48 eta=2d 22:57:37 |------------------------------------------------------------------------>
459
+ train_opt_callback: iter= 42 sample=153/178 sched=0.420000 loss=0.577738 dt=00:19:51 eta=2d 22:49:02 |--------------------------------------------------------------------->
460
+ train_opt_callback: iter= 43 sample=161/178 sched=0.430000 loss=0.129285 dt=00:19:13 eta=2d 20:15:05 |------------------------------------------------------------------------->
461
+ train_opt_callback: iter= 44 sample=169/178 sched=0.440000 loss=0.355127 dt=00:19:19 eta=2d 20:17:36 |----------------------------------------------------------------------->
462
+ train_opt_callback: iter= 45 sample=177/178 sched=0.450000 loss=0.384705 dt=00:19:16 eta=2d 19:47:27 |---------------------------------------------------------------------->
463
+ train_opt_callback: reshuffle samples. completed epochs: 2
464
+ train_opt_callback: iter= 46 sample=1/178 sched=0.460000 loss=0.239497 dt=00:19:13 eta=2d 19:18:54 |------------------------------------------------------------------------>
465
+ train_opt_callback: iter= 47 sample=9/178 sched=0.470000 loss=0.228520 dt=00:18:52 eta=2d 17:45:31 |------------------------------------------------------------------------>
466
+ train_opt_callback: iter= 48 sample=17/178 sched=0.480000 loss=0.113592 dt=00:19:51 eta=2d 20:51:04 |------------------------------------------------------------------------->
467
+ train_opt_callback: iter= 49 sample=25/178 sched=0.490000 loss=0.388964 dt=00:19:32 eta=2d 19:24:00 |---------------------------------------------------------------------->
468
+ save_checkpoint_lora_file: saving to checkpoint-50.gguf
469
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
470
+ save_as_llama_lora: saving to lora.bin
471
+ save_as_llama_lora: saving to lora.bin
472
+ train_opt_callback: iter= 50 sample=33/178 sched=0.500000 loss=0.242294 dt=00:19:36 eta=2d 19:19:47 |------------------------------------------------------------------------>
473
+ train_opt_callback: iter= 51 sample=41/178 sched=0.510000 loss=0.104918 dt=00:19:19 eta=2d 18:02:58 |------------------------------------------------------------------------->
474
+ train_opt_callback: iter= 52 sample=49/178 sched=0.520000 loss=0.132959 dt=00:19:45 eta=2d 19:11:15 |------------------------------------------------------------------------->
475
+ train_opt_callback: iter= 53 sample=57/178 sched=0.530000 loss=0.270326 dt=00:19:59 eta=2d 19:36:51 |------------------------------------------------------------------------>
476
+ train_opt_callback: iter= 54 sample=65/178 sched=0.540000 loss=0.214551 dt=00:19:51 eta=2d 18:51:20 |------------------------------------------------------------------------>
477
+ train_opt_callback: iter= 55 sample=73/178 sched=0.550000 loss=0.227192 dt=00:19:42 eta=2d 18:02:10 |------------------------------------------------------------------------>
478
+ train_opt_callback: iter= 56 sample=81/178 sched=0.560000 loss=0.193324 dt=00:19:34 eta=2d 17:15:30 |------------------------------------------------------------------------>
479
+ train_opt_callback: iter= 57 sample=89/178 sched=0.570000 loss=0.092658 dt=00:19:42 eta=2d 17:21:29 |------------------------------------------------------------------------->
480
+ train_opt_callback: iter= 58 sample=97/178 sched=0.580000 loss=0.288017 dt=00:19:52 eta=2d 17:34:28 |----------------------------------------------------------------------->
481
+ train_opt_callback: iter= 59 sample=105/178 sched=0.590000 loss=0.303981 dt=00:19:22 eta=2d 15:36:34 |----------------------------------------------------------------------->
482
+ save_checkpoint_lora_file: saving to checkpoint-60.gguf
483
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
484
+ save_as_llama_lora: saving to lora.bin
485
+ save_as_llama_lora: saving to lora.bin
486
+ train_opt_callback: iter= 60 sample=113/178 sched=0.600000 loss=0.135095 dt=00:19:02 eta=2d 14:13:25 |------------------------------------------------------------------------->
487
+ train_opt_callback: iter= 61 sample=121/178 sched=0.610000 loss=0.103868 dt=00:19:55 eta=2d 16:44:49 |------------------------------------------------------------------------->
488
+ train_opt_callback: iter= 62 sample=129/178 sched=0.620000 loss=0.101314 dt=00:19:34 eta=2d 15:18:35 |------------------------------------------------------------------------->
489
+ train_opt_callback: iter= 63 sample=137/178 sched=0.630000 loss=0.206111 dt=00:19:36 eta=2d 15:05:07 |------------------------------------------------------------------------>
490
+ train_opt_callback: iter= 64 sample=145/178 sched=0.640000 loss=0.238083 dt=00:19:10 eta=2d 13:22:03 |------------------------------------------------------------------------>
491
+ train_opt_callback: iter= 65 sample=153/178 sched=0.650000 loss=0.238338 dt=00:19:21 eta=2d 13:38:19 |------------------------------------------------------------------------>
492
+ train_opt_callback: iter= 66 sample=161/178 sched=0.660000 loss=0.057109 dt=00:19:45 eta=2d 14:32:54 |-------------------------------------------------------------------------->
493
+ train_opt_callback: iter= 67 sample=169/178 sched=0.670000 loss=0.222538 dt=00:19:59 eta=2d 14:57:58 |------------------------------------------------------------------------>
494
+ train_opt_callback: iter= 68 sample=177/178 sched=0.680000 loss=0.243102 dt=00:19:50 eta=2d 14:09:54 |------------------------------------------------------------------------>
495
+ train_opt_callback: reshuffle samples. completed epochs: 3
496
+ train_opt_callback: iter= 69 sample=1/178 sched=0.690000 loss=0.221211 dt=00:19:18 eta=2d 12:12:07 |------------------------------------------------------------------------>
497
+ save_checkpoint_lora_file: saving to checkpoint-70.gguf
498
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
499
+ save_as_llama_lora: saving to lora.bin
500
+ save_as_llama_lora: saving to lora.bin
501
+ train_opt_callback: iter= 70 sample=9/178 sched=0.700000 loss=0.131074 dt=00:20:02 eta=2d 14:07:11 |------------------------------------------------------------------------->
502
+ train_opt_callback: iter= 71 sample=17/178 sched=0.710000 loss=0.196565 dt=00:20:10 eta=2d 14:11:15 |------------------------------------------------------------------------>
503
+ train_opt_callback: iter= 72 sample=25/178 sched=0.720000 loss=0.136248 dt=00:20:44 eta=2d 15:35:57 |------------------------------------------------------------------------->
504
+ train_opt_callback: iter= 73 sample=33/178 sched=0.730000 loss=0.075492 dt=00:19:47 eta=2d 12:21:42 |-------------------------------------------------------------------------->
505
+ train_opt_callback: iter= 74 sample=41/178 sched=0.740000 loss=0.062405 dt=00:20:34 eta=2d 14:24:44 |-------------------------------------------------------------------------->
506
+ train_opt_callback: iter= 75 sample=49/178 sched=0.750000 loss=0.100914 dt=00:20:27 eta=2d 13:43:23 |------------------------------------------------------------------------->
507
+ train_opt_callback: iter= 76 sample=57/178 sched=0.760000 loss=0.179218 dt=00:20:04 eta=2d 12:14:05 |------------------------------------------------------------------------>
508
+ train_opt_callback: iter= 77 sample=65/178 sched=0.770000 loss=0.087842 dt=00:20:00 eta=2d 11:40:49 |------------------------------------------------------------------------->
509
+ train_opt_callback: iter= 78 sample=73/178 sched=0.780000 loss=0.068578 dt=00:20:27 eta=2d 12:41:37 |-------------------------------------------------------------------------->
510
+ train_opt_callback: iter= 79 sample=81/178 sched=0.790000 loss=0.261990 dt=00:20:28 eta=2d 12:23:13 |------------------------------------------------------------------------>
511
+ save_checkpoint_lora_file: saving to checkpoint-80.gguf
512
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
513
+ save_as_llama_lora: saving to lora.bin
514
+ save_as_llama_lora: saving to lora.bin
515
+ train_opt_callback: iter= 80 sample=89/178 sched=0.800000 loss=0.069881 dt=00:20:09 eta=2d 11:06:42 |-------------------------------------------------------------------------->
516
+ train_opt_callback: iter= 81 sample=97/178 sched=0.810000 loss=0.109635 dt=00:19:46 eta=2d 09:41:27 |------------------------------------------------------------------------->
517
+ train_opt_callback: iter= 82 sample=105/178 sched=0.820000 loss=0.272391 dt=00:19:51 eta=2d 09:34:54 |------------------------------------------------------------------------>
518
+ train_opt_callback: iter= 83 sample=113/178 sched=0.830000 loss=0.148119 dt=00:20:06 eta=2d 09:58:26 |------------------------------------------------------------------------->
519
+ train_opt_callback: iter= 84 sample=121/178 sched=0.840000 loss=0.086822 dt=00:20:35 eta=2d 11:03:01 |------------------------------------------------------------------------->
520
+ train_opt_callback: iter= 85 sample=129/178 sched=0.850000 loss=0.163737 dt=00:20:25 eta=2d 10:13:42 |------------------------------------------------------------------------->
521
+ train_opt_callback: iter= 86 sample=137/178 sched=0.860000 loss=0.120277 dt=00:19:35 eta=2d 07:31:11 |------------------------------------------------------------------------->
522
+ train_opt_callback: iter= 87 sample=145/178 sched=0.870000 loss=0.109836 dt=00:19:36 eta=2d 07:14:41 |------------------------------------------------------------------------->
523
+ train_opt_callback: iter= 88 sample=153/178 sched=0.880000 loss=0.084462 dt=00:24:40 eta=2d 21:06:45 |------------------------------------------------------------------------->
524
+ train_opt_callback: iter= 89 sample=161/178 sched=0.890000 loss=0.116081 dt=00:33:20 eta=3d 20:48:09 |------------------------------------------------------------------------->
525
+ save_checkpoint_lora_file: saving to checkpoint-90.gguf
526
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
527
+ save_as_llama_lora: saving to lora.bin
528
+ save_as_llama_lora: saving to lora.bin
529
+ train_opt_callback: iter= 90 sample=169/178 sched=0.900000 loss=0.148298 dt=00:35:32 eta=4d 02:18:40 |------------------------------------------------------------------------->
530
+ train_opt_callback: iter= 91 sample=177/178 sched=0.910000 loss=0.150541 dt=00:36:14 eta=4d 03:40:13 |------------------------------------------------------------------------->
531
+ train_opt_callback: reshuffle samples. completed epochs: 4
532
+ train_opt_callback: iter= 92 sample=1/178 sched=0.920000 loss=0.141938 dt=00:36:22 eta=4d 03:24:30 |------------------------------------------------------------------------->
533
+ train_opt_callback: iter= 93 sample=9/178 sched=0.930000 loss=0.110087 dt=00:36:44 eta=4d 03:50:07 |------------------------------------------------------------------------->
534
+ train_opt_callback: iter= 94 sample=17/178 sched=0.940000 loss=0.096049 dt=00:36:50 eta=4d 03:27:39 |------------------------------------------------------------------------->
535
+ train_opt_callback: iter= 95 sample=25/178 sched=0.950000 loss=0.062458 dt=00:36:49 eta=4d 02:47:38 |-------------------------------------------------------------------------->
536
+ train_opt_callback: iter= 96 sample=33/178 sched=0.960000 loss=0.050658 dt=00:36:30 eta=4d 01:22:08 |-------------------------------------------------------------------------->
537
+ train_opt_callback: iter= 97 sample=41/178 sched=0.970000 loss=0.131350 dt=00:36:30 eta=4d 00:44:21 |------------------------------------------------------------------------->
538
+ train_opt_callback: iter= 98 sample=49/178 sched=0.980000 loss=0.068363 dt=00:36:25 eta=3d 23:55:10 |-------------------------------------------------------------------------->
539
+ train_opt_callback: iter= 99 sample=57/178 sched=0.990000 loss=0.066281 dt=00:36:32 eta=3d 23:36:49 |-------------------------------------------------------------------------->
540
+ save_checkpoint_lora_file: saving to checkpoint-100.gguf
541
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
542
+ save_as_llama_lora: saving to lora.bin
543
+ save_as_llama_lora: saving to lora.bin
544
+ train_opt_callback: iter= 100 sample=65/178 sched=0.977975 loss=0.104312 dt=00:36:39 eta=3d 23:19:47 |------------------------------------------------------------------------->
545
+ train_opt_callback: iter= 101 sample=73/178 sched=0.977536 loss=0.067689 dt=00:36:36 eta=3d 22:35:05 |-------------------------------------------------------------------------->
546
+ train_opt_callback: iter= 102 sample=81/178 sched=0.977093 loss=0.048579 dt=00:36:25 eta=3d 21:28:57 |-------------------------------------------------------------------------->
547
+ train_opt_callback: iter= 103 sample=89/178 sched=0.976646 loss=0.077060 dt=00:36:20 eta=3d 20:39:11 |-------------------------------------------------------------------------->
548
+ train_opt_callback: iter= 104 sample=97/178 sched=0.976194 loss=0.070578 dt=00:36:27 eta=3d 20:20:47 |-------------------------------------------------------------------------->
549
+ train_opt_callback: iter= 105 sample=105/178 sched=0.975738 loss=0.086573 dt=00:36:33 eta=3d 20:01:28 |------------------------------------------------------------------------->
550
+ train_opt_callback: iter= 106 sample=113/178 sched=0.975278 loss=0.094845 dt=00:36:18 eta=3d 18:46:37 |------------------------------------------------------------------------->
551
+ train_opt_callback: iter= 107 sample=121/178 sched=0.974814 loss=0.104385 dt=00:36:35 eta=3d 18:52:51 |------------------------------------------------------------------------->
552
+ train_opt_callback: iter= 108 sample=129/178 sched=0.974346 loss=0.079805 dt=00:36:33 eta=3d 18:11:51 |------------------------------------------------------------------------->
553
+ train_opt_callback: iter= 109 sample=137/178 sched=0.973873 loss=0.115604 dt=00:36:27 eta=3d 17:18:30 |------------------------------------------------------------------------->
554
+ save_checkpoint_lora_file: saving to checkpoint-110.gguf
555
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
556
+ save_as_llama_lora: saving to lora.bin
557
+ save_as_llama_lora: saving to lora.bin
558
+ train_opt_callback: iter= 110 sample=145/178 sched=0.973396 loss=0.106835 dt=00:36:14 eta=3d 16:12:18 |------------------------------------------------------------------------->
559
+ train_opt_callback: iter= 111 sample=153/178 sched=0.972915 loss=0.108404 dt=00:36:22 eta=3d 15:55:32 |------------------------------------------------------------------------->
560
+ train_opt_callback: iter= 112 sample=161/178 sched=0.972430 loss=0.150818 dt=00:36:43 eta=3d 16:08:57 |------------------------------------------------------------------------->
561
+ train_opt_callback: iter= 113 sample=169/178 sched=0.971941 loss=0.111072 dt=00:36:30 eta=3d 15:00:24 |------------------------------------------------------------------------->
562
+ train_opt_callback: iter= 114 sample=177/178 sched=0.971447 loss=0.176334 dt=00:36:31 eta=3d 14:27:00 |------------------------------------------------------------------------->
563
+ train_opt_callback: reshuffle samples. completed epochs: 5
564
+ train_opt_callback: iter= 115 sample=1/178 sched=0.970950 loss=0.071819 dt=00:36:31 eta=3d 13:49:09 |-------------------------------------------------------------------------->
565
+ train_opt_callback: iter= 116 sample=9/178 sched=0.970448 loss=0.089301 dt=00:36:39 eta=3d 13:32:39 |------------------------------------------------------------------------->
566
+ train_opt_callback: iter= 117 sample=17/178 sched=0.969942 loss=0.069022 dt=00:36:31 eta=3d 12:37:25 |-------------------------------------------------------------------------->
567
+ train_opt_callback: iter= 118 sample=25/178 sched=0.969432 loss=0.088029 dt=00:36:37 eta=3d 12:14:04 |------------------------------------------------------------------------->
568
+ train_opt_callback: iter= 119 sample=33/178 sched=0.968918 loss=0.103543 dt=00:36:30 eta=3d 11:21:17 |------------------------------------------------------------------------->
569
+ save_checkpoint_lora_file: saving to checkpoint-120.gguf
570
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
571
+ save_as_llama_lora: saving to lora.bin
572
+ save_as_llama_lora: saving to lora.bin
573
+ train_opt_callback: iter= 120 sample=41/178 sched=0.968399 loss=0.080645 dt=00:36:33 eta=3d 10:51:58 |------------------------------------------------------------------------->
574
+ train_opt_callback: iter= 121 sample=49/178 sched=0.967877 loss=0.059648 dt=00:36:21 eta=3d 09:48:08 |-------------------------------------------------------------------------->
575
+ train_opt_callback: iter= 122 sample=57/178 sched=0.967350 loss=0.091482 dt=00:36:19 eta=3d 09:07:40 |------------------------------------------------------------------------->
576
+ train_opt_callback: iter= 123 sample=65/178 sched=0.966820 loss=0.057773 dt=00:36:28 eta=3d 08:51:08 |-------------------------------------------------------------------------->
577
+ train_opt_callback: iter= 124 sample=73/178 sched=0.966285 loss=0.091841 dt=00:36:34 eta=3d 08:26:52 |------------------------------------------------------------------------->
578
+ train_opt_callback: iter= 125 sample=81/178 sched=0.965746 loss=0.077759 dt=00:36:18 eta=3d 07:15:57 |-------------------------------------------------------------------------->
579
+ train_opt_callback: iter= 126 sample=89/178 sched=0.965203 loss=0.084306 dt=00:36:27 eta=3d 06:59:43 |------------------------------------------------------------------------->
580
+ train_opt_callback: iter= 127 sample=97/178 sched=0.964656 loss=0.062791 dt=00:36:34 eta=3d 06:37:24 |-------------------------------------------------------------------------->
581
+ train_opt_callback: iter= 128 sample=105/178 sched=0.964104 loss=0.065764 dt=00:36:47 eta=3d 06:30:19 |-------------------------------------------------------------------------->
582
+ train_opt_callback: iter= 129 sample=113/178 sched=0.963549 loss=0.063520 dt=00:37:09 eta=3d 06:38:29 |-------------------------------------------------------------------------->
583
+ save_checkpoint_lora_file: saving to checkpoint-130.gguf
584
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
585
+ save_as_llama_lora: saving to lora.bin
586
+ save_as_llama_lora: saving to lora.bin
587
+ train_opt_callback: iter= 130 sample=121/178 sched=0.962990 loss=0.091305 dt=00:37:05 eta=3d 05:53:43 |------------------------------------------------------------------------->
588
+ train_opt_callback: iter= 131 sample=129/178 sched=0.962426 loss=0.076932 dt=00:36:59 eta=3d 05:04:49 |-------------------------------------------------------------------------->
589
+ train_opt_callback: iter= 132 sample=137/178 sched=0.961859 loss=0.077943 dt=00:36:58 eta=3d 04:25:42 |-------------------------------------------------------------------------->
590
+ train_opt_callback: iter= 133 sample=145/178 sched=0.961287 loss=0.078317 dt=00:36:36 eta=3d 03:02:19 |------------------------------------------------------------------------->
591
+ train_opt_callback: iter= 134 sample=153/178 sched=0.960711 loss=0.099851 dt=00:36:49 eta=3d 02:51:55 |------------------------------------------------------------------------->
592
+ train_opt_callback: iter= 135 sample=161/178 sched=0.960131 loss=0.066786 dt=00:37:01 eta=3d 02:40:55 |-------------------------------------------------------------------------->
593
+ train_opt_callback: iter= 136 sample=169/178 sched=0.959548 loss=0.068781 dt=00:36:53 eta=3d 01:46:21 |-------------------------------------------------------------------------->
594
+ train_opt_callback: iter= 137 sample=177/178 sched=0.958960 loss=0.083668 dt=00:36:34 eta=3d 00:33:19 |------------------------------------------------------------------------->
595
+ train_opt_callback: reshuffle samples. completed epochs: 6
596
+ train_opt_callback: iter= 138 sample=1/178 sched=0.958368 loss=0.062936 dt=00:36:48 eta=3d 00:22:24 |-------------------------------------------------------------------------->
597
+ train_opt_callback: iter= 139 sample=9/178 sched=0.957772 loss=0.062042 dt=00:36:42 eta=2d 23:34:22 |-------------------------------------------------------------------------->
598
+ save_checkpoint_lora_file: saving to checkpoint-140.gguf
599
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
600
+ save_as_llama_lora: saving to lora.bin
601
+ save_as_llama_lora: saving to lora.bin
602
+ train_opt_callback: iter= 140 sample=17/178 sched=0.957172 loss=0.049663 dt=00:36:44 eta=2d 23:01:33 |-------------------------------------------------------------------------->
603
+ train_opt_callback: iter= 141 sample=25/178 sched=0.956568 loss=0.068019 dt=00:37:00 eta=2d 22:56:35 |-------------------------------------------------------------------------->
604
+ train_opt_callback: iter= 142 sample=33/178 sched=0.955960 loss=0.063782 dt=00:37:03 eta=2d 22:24:35 |-------------------------------------------------------------------------->
605
+ train_opt_callback: iter= 143 sample=41/178 sched=0.955348 loss=0.057332 dt=00:36:59 eta=2d 21:39:13 |-------------------------------------------------------------------------->
606
+ train_opt_callback: iter= 144 sample=49/178 sched=0.954732 loss=0.084136 dt=00:36:58 eta=2d 21:00:29 |------------------------------------------------------------------------->
607
+ train_opt_callback: iter= 145 sample=57/178 sched=0.954112 loss=0.056280 dt=00:36:56 eta=2d 20:19:54 |-------------------------------------------------------------------------->
608
+ train_opt_callback: iter= 146 sample=65/178 sched=0.953488 loss=0.072391 dt=00:36:46 eta=2d 19:25:17 |-------------------------------------------------------------------------->
609
+ train_opt_callback: iter= 147 sample=73/178 sched=0.952861 loss=0.091059 dt=00:36:51 eta=2d 18:57:15 |------------------------------------------------------------------------->
610
+ train_opt_callback: iter= 148 sample=81/178 sched=0.952229 loss=0.060017 dt=00:36:50 eta=2d 18:18:27 |-------------------------------------------------------------------------->
611
+ train_opt_callback: iter= 149 sample=89/178 sched=0.951593 loss=0.057328 dt=00:37:06 eta=2d 18:10:07 |-------------------------------------------------------------------------->
612
+ save_checkpoint_lora_file: saving to checkpoint-150.gguf
613
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
614
+ save_as_llama_lora: saving to lora.bin
615
+ save_as_llama_lora: saving to lora.bin
616
+ train_opt_callback: iter= 150 sample=97/178 sched=0.950953 loss=0.052103 dt=00:37:08 eta=2d 17:37:32 |-------------------------------------------------------------------------->
617
+ train_opt_callback: iter= 151 sample=105/178 sched=0.950309 loss=0.065442 dt=00:36:51 eta=2d 16:29:31 |-------------------------------------------------------------------------->
618
+ train_opt_callback: iter= 152 sample=113/178 sched=0.949661 loss=0.056746 dt=00:37:03 eta=2d 16:14:24 |-------------------------------------------------------------------------->
619
+ train_opt_callback: iter= 153 sample=121/178 sched=0.949010 loss=0.070758 dt=00:37:09 eta=2d 15:46:52 |-------------------------------------------------------------------------->
620
+ train_opt_callback: iter= 154 sample=129/178 sched=0.948354 loss=0.069517 dt=00:36:57 eta=2d 14:49:22 |-------------------------------------------------------------------------->
621
+ train_opt_callback: iter= 155 sample=137/178 sched=0.947695 loss=0.065151 dt=00:36:59 eta=2d 14:16:57 |-------------------------------------------------------------------------->
622
+ train_opt_callback: iter= 156 sample=145/178 sched=0.947031 loss=0.073535 dt=00:36:53 eta=2d 13:28:26 |-------------------------------------------------------------------------->
623
+ train_opt_callback: iter= 157 sample=153/178 sched=0.946364 loss=0.060402 dt=00:36:47 eta=2d 12:42:39 |-------------------------------------------------------------------------->
624
+ train_opt_callback: iter= 158 sample=161/178 sched=0.945692 loss=0.092005 dt=00:36:58 eta=2d 12:22:44 |------------------------------------------------------------------------->
625
+ train_opt_callback: iter= 159 sample=169/178 sched=0.945017 loss=0.065230 dt=00:36:52 eta=2d 11:36:24 |-------------------------------------------------------------------------->
626
+ save_checkpoint_lora_file: saving to checkpoint-160.gguf
627
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
628
+ save_as_llama_lora: saving to lora.bin
629
+ save_as_llama_lora: saving to lora.bin
630
+ train_opt_callback: iter= 160 sample=177/178 sched=0.944338 loss=0.081499 dt=00:36:32 eta=2d 10:27:42 |------------------------------------------------------------------------->
631
+ train_opt_callback: reshuffle samples. completed epochs: 7
632
+ train_opt_callback: iter= 161 sample=1/178 sched=0.943655 loss=0.074532 dt=00:36:23 eta=2d 09:36:26 |-------------------------------------------------------------------------->
633
+ train_opt_callback: iter= 162 sample=9/178 sched=0.942968 loss=0.047449 dt=00:36:36 eta=2d 09:20:45 |-------------------------------------------------------------------------->
634
+ train_opt_callback: iter= 163 sample=17/178 sched=0.942277 loss=0.075340 dt=00:36:40 eta=2d 08:50:47 |-------------------------------------------------------------------------->
635
+ train_opt_callback: iter= 164 sample=25/178 sched=0.941583 loss=0.058686 dt=00:36:31 eta=2d 08:00:13 |-------------------------------------------------------------------------->
636
+ train_opt_callback: iter= 165 sample=33/178 sched=0.940884 loss=0.078167 dt=00:36:19 eta=2d 07:05:45 |-------------------------------------------------------------------------->
637
+ train_opt_callback: iter= 166 sample=41/178 sched=0.940182 loss=0.049373 dt=00:36:17 eta=2d 06:26:38 |-------------------------------------------------------------------------->
638
+ train_opt_callback: iter= 167 sample=49/178 sched=0.939476 loss=0.071963 dt=00:36:13 eta=2d 05:44:20 |-------------------------------------------------------------------------->
639
+ train_opt_callback: iter= 168 sample=57/178 sched=0.938765 loss=0.061201 dt=00:36:17 eta=2d 05:13:00 |-------------------------------------------------------------------------->
640
+ train_opt_callback: iter= 169 sample=65/178 sched=0.938052 loss=0.054520 dt=00:36:32 eta=2d 04:59:19 |-------------------------------------------------------------------------->
641
+ save_checkpoint_lora_file: saving to checkpoint-170.gguf
642
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
643
+ save_as_llama_lora: saving to lora.bin
644
+ save_as_llama_lora: saving to lora.bin
645
+ train_opt_callback: iter= 170 sample=73/178 sched=0.937334 loss=0.055787 dt=00:36:42 eta=2d 04:36:15 |-------------------------------------------------------------------------->
646
+ train_opt_callback: iter= 171 sample=81/178 sched=0.936612 loss=0.058552 dt=00:36:31 eta=2d 03:44:10 |-------------------------------------------------------------------------->
647
+ train_opt_callback: iter= 172 sample=89/178 sched=0.935887 loss=0.066907 dt=00:36:37 eta=2d 03:16:36 |-------------------------------------------------------------------------->
648
+ train_opt_callback: iter= 173 sample=97/178 sched=0.935158 loss=0.051261 dt=00:36:19 eta=2d 02:15:00 |-------------------------------------------------------------------------->
649
+ train_opt_callback: iter= 174 sample=105/178 sched=0.934425 loss=0.053868 dt=00:36:38 eta=2d 02:04:51 |-------------------------------------------------------------------------->
650
+ train_opt_callback: iter= 175 sample=113/178 sched=0.933688 loss=0.056048 dt=00:36:30 eta=2d 01:16:42 |-------------------------------------------------------------------------->
651
+ train_opt_callback: iter= 176 sample=121/178 sched=0.932948 loss=0.045508 dt=00:36:29 eta=2d 00:39:40 |-------------------------------------------------------------------------->
652
+ train_opt_callback: iter= 177 sample=129/178 sched=0.932203 loss=0.068252 dt=00:36:19 eta=1d 23:50:09 |-------------------------------------------------------------------------->
653
+ train_opt_callback: iter= 178 sample=137/178 sched=0.931455 loss=0.048026 dt=00:36:19 eta=1d 23:12:56 |-------------------------------------------------------------------------->
654
+ train_opt_callback: iter= 179 sample=145/178 sched=0.930703 loss=0.047452 dt=00:36:29 eta=1d 22:49:28 |-------------------------------------------------------------------------->
655
+ save_checkpoint_lora_file: saving to checkpoint-180.gguf
656
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
657
+ save_as_llama_lora: saving to lora.bin
658
+ save_as_llama_lora: saving to lora.bin
659
+ train_opt_callback: iter= 180 sample=153/178 sched=0.929948 loss=0.079426 dt=00:36:15 eta=1d 21:55:25 |------------------------------------------------------------------------->
660
+ train_opt_callback: iter= 181 sample=161/178 sched=0.929188 loss=0.050863 dt=00:36:14 eta=1d 21:18:14 |-------------------------------------------------------------------------->
661
+ train_opt_callback: iter= 182 sample=169/178 sched=0.928425 loss=0.052199 dt=00:36:35 eta=1d 21:07:59 |-------------------------------------------------------------------------->
662
+ train_opt_callback: iter= 183 sample=177/178 sched=0.927658 loss=0.058410 dt=00:36:29 eta=1d 20:24:11 |-------------------------------------------------------------------------->
663
+ train_opt_callback: reshuffle samples. completed epochs: 8
664
+ train_opt_callback: iter= 184 sample=1/178 sched=0.926888 loss=0.045401 dt=00:36:22 eta=1d 19:39:23 |-------------------------------------------------------------------------->
665
+ train_opt_callback: iter= 185 sample=9/178 sched=0.926113 loss=0.052396 dt=00:36:31 eta=1d 19:13:49 |-------------------------------------------------------------------------->
666
+ train_opt_callback: iter= 186 sample=17/178 sched=0.925335 loss=0.067700 dt=00:36:31 eta=1d 18:37:00 |-------------------------------------------------------------------------->
667
+ train_opt_callback: iter= 187 sample=25/178 sched=0.924554 loss=0.046180 dt=00:36:16 eta=1d 17:42:56 |-------------------------------------------------------------------------->
668
+ train_opt_callback: iter= 188 sample=33/178 sched=0.923768 loss=0.050971 dt=00:36:36 eta=1d 17:29:09 |-------------------------------------------------------------------------->
669
+ train_opt_callback: iter= 189 sample=41/178 sched=0.922979 loss=0.049186 dt=00:36:34 eta=1d 16:50:17 |-------------------------------------------------------------------------->
670
+ save_checkpoint_lora_file: saving to checkpoint-190.gguf
671
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
672
+ save_as_llama_lora: saving to lora.bin
673
+ save_as_llama_lora: saving to lora.bin
674
+ train_opt_callback: iter= 190 sample=49/178 sched=0.922186 loss=0.062805 dt=00:36:44 eta=1d 16:24:30 |-------------------------------------------------------------------------->
675
+ train_opt_callback: iter= 191 sample=57/178 sched=0.921390 loss=0.047807 dt=00:36:43 eta=1d 15:46:58 |-------------------------------------------------------------------------->
676
+ train_opt_callback: iter= 192 sample=65/178 sched=0.920590 loss=0.049784 dt=00:37:41 eta=1d 16:12:06 |-------------------------------------------------------------------------->
677
+ train_opt_callback: iter= 193 sample=73/178 sched=0.919786 loss=0.055659 dt=00:37:01 eta=1d 14:52:57 |-------------------------------------------------------------------------->
678
+ train_opt_callback: iter= 194 sample=81/178 sched=0.918978 loss=0.051812 dt=00:36:56 eta=1d 14:10:26 |-------------------------------------------------------------------------->
679
+ train_opt_callback: iter= 195 sample=89/178 sched=0.918167 loss=0.051834 dt=00:37:03 eta=1d 13:40:34 |-------------------------------------------------------------------------->
680
+ train_opt_callback: iter= 196 sample=97/178 sched=0.917353 loss=0.063875 dt=00:37:02 eta=1d 13:02:30 |-------------------------------------------------------------------------->
681
+ train_opt_callback: iter= 197 sample=105/178 sched=0.916534 loss=0.044799 dt=00:36:46 eta=1d 12:09:21 |-------------------------------------------------------------------------->
682
+ train_opt_callback: iter= 198 sample=113/178 sched=0.915712 loss=0.052604 dt=00:36:42 eta=1d 11:29:15 |-------------------------------------------------------------------------->
683
+ train_opt_callback: iter= 199 sample=121/178 sched=0.914887 loss=0.052343 dt=00:36:41 eta=1d 10:51:43 |-------------------------------------------------------------------------->
684
+ save_checkpoint_lora_file: saving to checkpoint-200.gguf
685
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
686
+ save_as_llama_lora: saving to lora.bin
687
+ save_as_llama_lora: saving to lora.bin
688
+ train_opt_callback: iter= 200 sample=129/178 sched=0.914058 loss=0.053900 dt=00:36:28 eta=1d 10:02:57 |-------------------------------------------------------------------------->
689
+ train_opt_callback: iter= 201 sample=137/178 sched=0.913225 loss=0.047804 dt=00:36:32 eta=1d 09:29:47 |-------------------------------------------------------------------------->
690
+ train_opt_callback: iter= 202 sample=145/178 sched=0.912389 loss=0.045218 dt=00:37:16 eta=1d 09:33:15 |-------------------------------------------------------------------------->
691
+ train_opt_callback: iter= 203 sample=153/178 sched=0.911549 loss=0.056633 dt=00:37:15 eta=1d 08:54:29 |-------------------------------------------------------------------------->
692
+ train_opt_callback: iter= 204 sample=161/178 sched=0.910705 loss=0.087018 dt=00:37:17 eta=1d 08:18:48 |------------------------------------------------------------------------->
693
+ train_opt_callback: iter= 205 sample=169/178 sched=0.909858 loss=0.051251 dt=00:36:57 eta=1d 07:24:27 |-------------------------------------------------------------------------->
694
+ train_opt_callback: iter= 206 sample=177/178 sched=0.909007 loss=0.062427 dt=00:36:48 eta=1d 06:40:45 |-------------------------------------------------------------------------->
695
+ train_opt_callback: reshuffle samples. completed epochs: 9
696
+ train_opt_callback: iter= 207 sample=1/178 sched=0.908153 loss=0.054127 dt=00:36:54 eta=1d 06:08:18 |-------------------------------------------------------------------------->
697
+ train_opt_callback: iter= 208 sample=9/178 sched=0.907296 loss=0.051355 dt=00:36:40 eta=1d 05:20:41 |-------------------------------------------------------------------------->
698
+ train_opt_callback: iter= 209 sample=17/178 sched=0.906434 loss=0.045598 dt=00:36:52 eta=1d 04:53:05 |-------------------------------------------------------------------------->
699
+ save_checkpoint_lora_file: saving to checkpoint-210.gguf
700
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
701
+ save_as_llama_lora: saving to lora.bin
702
+ save_as_llama_lora: saving to lora.bin
703
+ train_opt_callback: iter= 210 sample=25/178 sched=0.905570 loss=0.045980 dt=00:36:39 eta=1d 04:06:27 |-------------------------------------------------------------------------->
704
+ train_opt_callback: iter= 211 sample=33/178 sched=0.904702 loss=0.050601 dt=00:36:36 eta=1d 03:27:37 |-------------------------------------------------------------------------->
705
+ train_opt_callback: iter= 212 sample=41/178 sched=0.903830 loss=0.050250 dt=00:36:59 eta=1d 03:07:28 |-------------------------------------------------------------------------->
706
+ train_opt_callback: iter= 213 sample=49/178 sched=0.902955 loss=0.043415 dt=00:36:52 eta=1d 02:25:32 |-------------------------------------------------------------------------->
707
+ train_opt_callback: iter= 214 sample=57/178 sched=0.902076 loss=0.059098 dt=00:37:10 eta=1d 02:01:34 |-------------------------------------------------------------------------->
708
+ train_opt_callback: iter= 215 sample=65/178 sched=0.901194 loss=0.047417 dt=00:36:53 eta=1d 01:12:38 |-------------------------------------------------------------------------->
709
+ train_opt_callback: iter= 216 sample=73/178 sched=0.900308 loss=0.047726 dt=00:36:57 eta=1d 00:38:27 |-------------------------------------------------------------------------->
710
+ train_opt_callback: iter= 217 sample=81/178 sched=0.899419 loss=0.064566 dt=00:36:56 eta=1d 00:00:34 |-------------------------------------------------------------------------->
711
+ train_opt_callback: iter= 218 sample=89/178 sched=0.898526 loss=0.046686 dt=00:36:22 eta=23:02:12 |-------------------------------------------------------------------------->
712
+ train_opt_callback: iter= 219 sample=97/178 sched=0.897630 loss=0.052115 dt=00:36:48 eta=22:42:04 |-------------------------------------------------------------------------->
713
+ save_checkpoint_lora_file: saving to checkpoint-220.gguf
714
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
715
+ save_as_llama_lora: saving to lora.bin
716
+ save_as_llama_lora: saving to lora.bin
717
+ train_opt_callback: iter= 220 sample=105/178 sched=0.896731 loss=0.052652 dt=00:36:57 eta=22:10:33 |-------------------------------------------------------------------------->
718
+ train_opt_callback: iter= 221 sample=113/178 sched=0.895828 loss=0.048956 dt=00:36:57 eta=21:33:23 |-------------------------------------------------------------------------->
719
+ train_opt_callback: iter= 222 sample=121/178 sched=0.894922 loss=0.047552 dt=00:36:44 eta=20:49:26 |-------------------------------------------------------------------------->
720
+ train_opt_callback: iter= 223 sample=129/178 sched=0.894012 loss=0.043168 dt=00:36:43 eta=20:12:03 |-------------------------------------------------------------------------->
721
+ train_opt_callback: iter= 224 sample=137/178 sched=0.893099 loss=0.050130 dt=00:36:45 eta=19:36:25 |-------------------------------------------------------------------------->
722
+ train_opt_callback: iter= 225 sample=145/178 sched=0.892183 loss=0.044088 dt=00:36:37 eta=18:55:10 |-------------------------------------------------------------------------->
723
+ train_opt_callback: iter= 226 sample=153/178 sched=0.891263 loss=0.058652 dt=00:36:50 eta=18:25:05 |-------------------------------------------------------------------------->
724
+ train_opt_callback: iter= 227 sample=161/178 sched=0.890340 loss=0.048266 dt=00:37:02 eta=17:54:22 |-------------------------------------------------------------------------->
725
+ train_opt_callback: iter= 228 sample=169/178 sched=0.889413 loss=0.049002 dt=00:36:38 eta=17:05:46 |-------------------------------------------------------------------------->
726
+ train_opt_callback: iter= 229 sample=177/178 sched=0.888483 loss=0.071915 dt=00:36:51 eta=16:35:14 |-------------------------------------------------------------------------->
727
+ train_opt_callback: reshuffle samples. completed epochs: 10
728
+ save_checkpoint_lora_file: saving to checkpoint-230.gguf
729
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
730
+ save_as_llama_lora: saving to lora.bin
731
+ save_as_llama_lora: saving to lora.bin
732
+ train_opt_callback: iter= 230 sample=1/178 sched=0.887550 loss=0.050140 dt=00:36:56 eta=16:00:20 |-------------------------------------------------------------------------->
733
+ train_opt_callback: iter= 231 sample=9/178 sched=0.886613 loss=0.041014 dt=00:36:44 eta=15:18:38 |-------------------------------------------------------------------------->
734
+ train_opt_callback: iter= 232 sample=17/178 sched=0.885674 loss=0.056183 dt=00:36:38 eta=14:39:14 |-------------------------------------------------------------------------->
735
+ train_opt_callback: iter= 233 sample=25/178 sched=0.884730 loss=0.047450 dt=00:36:33 eta=14:00:56 |-------------------------------------------------------------------------->
736
+ train_opt_callback: iter= 234 sample=33/178 sched=0.883784 loss=0.041083 dt=00:36:26 eta=13:21:44 |-------------------------------------------------------------------------->
737
+ train_opt_callback: iter= 235 sample=41/178 sched=0.882834 loss=0.051407 dt=00:36:35 eta=12:48:19 |-------------------------------------------------------------------------->
738
+ train_opt_callback: iter= 236 sample=49/178 sched=0.881881 loss=0.046471 dt=00:36:29 eta=12:09:58 |-------------------------------------------------------------------------->
739
+ train_opt_callback: iter= 237 sample=57/178 sched=0.880924 loss=0.051171 dt=00:36:35 eta=11:35:10 |-------------------------------------------------------------------------->
740
+ train_opt_callback: iter= 238 sample=65/178 sched=0.879965 loss=0.039778 dt=00:36:19 eta=10:53:58 |-------------------------------------------------------------------------->
741
+ train_opt_callback: iter= 239 sample=73/178 sched=0.879002 loss=0.048262 dt=00:36:51 eta=10:26:33 |-------------------------------------------------------------------------->
742
+ save_checkpoint_lora_file: saving to checkpoint-240.gguf
743
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
744
+ save_as_llama_lora: saving to lora.bin
745
+ save_as_llama_lora: saving to lora.bin
746
+ train_opt_callback: iter= 240 sample=81/178 sched=0.878036 loss=0.050442 dt=00:37:14 eta=09:55:45 |-------------------------------------------------------------------------->
747
+ train_opt_callback: iter= 241 sample=89/178 sched=0.877066 loss=0.051114 dt=00:37:23 eta=09:20:55 |-------------------------------------------------------------------------->
748
+ train_opt_callback: iter= 242 sample=97/178 sched=0.876094 loss=0.046777 dt=00:36:59 eta=08:37:59 |-------------------------------------------------------------------------->
749
+ train_opt_callback: iter= 243 sample=105/178 sched=0.875118 loss=0.063385 dt=00:37:02 eta=08:01:26 |-------------------------------------------------------------------------->
750
+ train_opt_callback: iter= 244 sample=113/178 sched=0.874139 loss=0.047352 dt=00:37:05 eta=07:25:05 |-------------------------------------------------------------------------->
751
+ train_opt_callback: iter= 245 sample=121/178 sched=0.873157 loss=0.053672 dt=00:37:24 eta=06:51:27 |-------------------------------------------------------------------------->
752
+ train_opt_callback: iter= 246 sample=129/178 sched=0.872171 loss=0.054228 dt=00:37:03 eta=06:10:35 |-------------------------------------------------------------------------->
753
+ train_opt_callback: iter= 247 sample=137/178 sched=0.871183 loss=0.044063 dt=00:36:52 eta=05:31:50 |-------------------------------------------------------------------------->
754
+ train_opt_callback: iter= 248 sample=145/178 sched=0.870191 loss=0.047287 dt=00:36:50 eta=04:54:40 |-------------------------------------------------------------------------->
755
+ train_opt_callback: iter= 249 sample=153/178 sched=0.869196 loss=0.049908 dt=00:36:47 eta=04:17:31 |-------------------------------------------------------------------------->
756
+ save_checkpoint_lora_file: saving to checkpoint-250.gguf
757
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
758
+ save_as_llama_lora: saving to lora.bin
759
+ save_as_llama_lora: saving to lora.bin
760
+ train_opt_callback: iter= 250 sample=161/178 sched=0.868198 loss=0.057780 dt=00:36:36 eta=03:39:38 |-------------------------------------------------------------------------->
761
+ train_opt_callback: iter= 251 sample=169/178 sched=0.867197 loss=0.055477 dt=00:36:23 eta=03:01:55 |-------------------------------------------------------------------------->
762
+ train_opt_callback: iter= 252 sample=177/178 sched=0.866192 loss=0.047620 dt=00:36:53 eta=02:27:35 |-------------------------------------------------------------------------->
763
+ train_opt_callback: reshuffle samples. completed epochs: 11
764
+ train_opt_callback: iter= 253 sample=1/178 sched=0.865185 loss=0.044904 dt=00:36:49 eta=01:50:29 |-------------------------------------------------------------------------->
765
+ train_opt_callback: iter= 254 sample=9/178 sched=0.864174 loss=0.048317 dt=00:36:59 eta=01:13:59 |-------------------------------------------------------------------------->
766
+ train_opt_callback: iter= 255 sample=17/178 sched=0.863161 loss=0.046755 dt=00:36:48 eta=00:36:48 |-------------------------------------------------------------------------->
767
+ train_opt_callback: iter= 256 sample=25/178 sched=0.862144 loss=0.045131 dt=00:36:48 eta=0.0ms |-------------------------------------------------------------------------->
768
+ main: total training time: 5d 12:53:46
769
+ save_checkpoint_lora_file: saving to checkpoint-256.gguf
770
+ save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
771
+ save_as_llama_lora: saving to lora.bin
772
+ save_as_llama_lora: saving to lora.bin
train.txt ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <s>### Human: What is hydrogen's atomic number? ### Assistant: Hydrogen's atomic number is 1.
2
+ <s>### Human: What group is hydrogen in? ### Assistant: Hydrogen is in group 1.
3
+ <s>### Human: What period is hydrogen in? ### Assistant: Hydrogen is in period 1.
4
+ <s>### Human: What is hydrogen's atomic weight? ### Assistant: Hydrogen's atomic weight is 1.01.
5
+ <s>### Human: What is hydrogen's state at room temperature? ### Assistant: Hydrogen's state is gas at room temperature.
6
+ <s>### Human: How many protons does hydrogen have? ### Assistant: Hydrogen has 1 proton.
7
+ <s>### Human: How many neutrons does hydrogen usually have? ### Assistant: Hydrogen usually has 0 neutrons.
8
+ <s>### Human: How many electrons does hydrogen usually have? ### Assistant: Hydrogen usually has 1 electron.
9
+ <s>### Human: What is hydrogen's symbol? ### Assistant: Hydrogen's symbol is H.
10
+ <s>### Human: Where is hydrogen most abundant? ### Assistant: Hydrogen is most abundant in stars.
11
+ <s>### Human: What column is hydrogen in? ### Assistant: Hydrogen is in column 1.
12
+ <s>### Human: What row is hydrogen in? ### Assistant: Hydrogen is in row 1.
13
+ <s>### Human: What is hydrogen's melting point? ### Assistant: Hydrogen's melting point is -259.1 degrees Celsius.
14
+ <s>### Human: What is hydrogen's boiling point? ### Assistant: Hydrogen's boiling point is -252.9 degrees Celsius.
15
+ <s>### Human: What is hydrogen's radius? ### Assistant: Hydrogen's radius is 53 picometers.
16
+ <s>### Human: What is unique about hydrogen? ### Assistant: It's the most abundant element in the universe, making up over 75% of all matter.
17
+ <s>### Human: What is carbon's atomic number? ### Assistant: Carbon's atomic number is 6.
18
+ <s>### Human: What group is carbon in? ### Assistant: Carbon is in group 14.
19
+ <s>### Human: What period is carbon in? ### Assistant: Carbon is in period 2.
20
+ <s>### Human: What is carbon's atomic weight? ### Assistant: Carbon's atomic weight is 12.01.
21
+ <s>### Human: What is carbon's state at room temperature? ### Assistant: Carbon's state is solid at room temperature.
22
+ <s>### Human: How many protons does carbon have? ### Assistant: Carbon has 6 protons.
23
+ <s>### Human: How many neutrons does carbon usually have? ### Assistant: Carbon usually has 6 neutrons.
24
+ <s>### Human: How many electrons does carbon usually have? ### Assistant: Carbon usually has 6 electrons.
25
+ <s>### Human: What is carbon's symbol? ### Assistant: Carbon's symbol is C.
26
+ <s>### Human: Where is carbon most abundant? ### Assistant: Carbon is most abundant in rocks, such as those in Earth's crust.
27
+ <s>### Human: What column is carbon in? ### Assistant: Carbon is in column 14.
28
+ <s>### Human: What row is carbon in? ### Assistant: Carbon is in row 2.
29
+ <s>### Human: What is carbon's melting point? ### Assistant: Carbon's melting point is 3,550 degrees Celsius.
30
+ <s>### Human: What is carbon's boiling point? ### Assistant: Carbon's boiling point is 4,827 degrees Celsius.
31
+ <s>### Human: What is carbon's radius? ### Assistant: Carbon's radius is 67 picometers.
32
+ <s>### Human: What is unique about carbon? ### Assistant: Carbon is essential to life as we know it because it readily forms many bonds with a variety of elements.
33
+ <s>### Human: What is silicon's atomic number? ### Assistant: Silicon's atomic number is 14.
34
+ <s>### Human: What group is silicon in? ### Assistant: Silicon is in group 14.
35
+ <s>### Human: What period is silicon in? ### Assistant: Silicon is in period 3.
36
+ <s>### Human: What is silicon's atomic weight? ### Assistant: Silicon's atomic weight is 28.09.
37
+ <s>### Human: What is silicon's state at room temperature? ### Assistant: Silicon's state is solid at room temperature.
38
+ <s>### Human: How many protons does silicon have? ### Assistant: Silicon has 14 protons.
39
+ <s>### Human: How many neutrons does silicon usually have? ### Assistant: Silicon usually has 14 neutrons.
40
+ <s>### Human: How many electrons does silicon usually have? ### Assistant: Silicon usually has 14 electrons.
41
+ <s>### Human: What is silicon's symbol? ### Assistant: Silicon's symbol is S.
42
+ <s>### Human: Where is silicon most abundant? ### Assistant: Silicon, like many metals, is common in rocks where it forms a component of minerals.
43
+ <s>### Human: What column is silicon in? ### Assistant: Silicon is in column 14.
44
+ <s>### Human: What row is silicon in? ### Assistant: Silicon is in row 3.
45
+ <s>### Human: What is silicon's melting point? ### Assistant: Silicon's melting point is 1,410 degrees Celsius.
46
+ <s>### Human: What is silicon's boiling point? ### Assistant: Silicon's boiling point is 3,265 degrees Celsius.
47
+ <s>### Human: What is silicon's radius? ### Assistant: Silicon's radius is 111 picometers.
48
+ <s>### Human: What is unique about silicon? ### Assistant: Silicon is used to make the transistors at the heart of all computers.
49
+ <s>### Human: What is argon's atomic number? ### Assistant: Argon's atomic number is 18.
50
+ <s>### Human: What group is argon in? ### Assistant: Argon is in group 18.
51
+ <s>### Human: What period is argon in? ### Assistant: Argon is in period 3.
52
+ <s>### Human: What is argon's atomic weight? ### Assistant: Argon's atomic weight is 39.95.
53
+ <s>### Human: What is argon's state at room temperature? ### Assistant: Argon's state is gas at room temperature.
54
+ <s>### Human: How many protons does argon have? ### Assistant: Argon has 18 protons.
55
+ <s>### Human: How many neutrons does argon usually have? ### Assistant: Argon usually has 18 neutrons.
56
+ <s>### Human: How many electrons does argon usually have? ### Assistant: Argon usually has 18 electrons.
57
+ <s>### Human: What is argon's symbol? ### Assistant: Argon's symbol is Ar.
58
+ <s>### Human: Where is argon most abundant? ### Assistant: Argon is the third most abundant gas in Earth's atmosphere.
59
+ <s>### Human: What column is argon in? ### Assistant: Argon is in column 18.
60
+ <s>### Human: What row is argon in? ### Assistant: Argon is in row 3.
61
+ <s>### Human: What is argon's melting point? ### Assistant: Argon's melting point is -189.2 degrees Celsius.
62
+ <s>### Human: What is argon's boiling point? ### Assistant: Argon's boiling point is -185.7 degrees Celsius.
63
+ <s>### Human: What is argon's radius? ### Assistant: Argon's radius is 71 picometers.
64
+ <s>### Human: What is unique about argon? ### Assistant: Argon is a noble gas, meaning that it is much less reactive than most other elements.
65
+ <s>### Human: What is calcium's atomic number? ### Assistant: Calcium's atomic number is 20.
66
+ <s>### Human: What group is calcium in? ### Assistant: Calcium is in group 2.
67
+ <s>### Human: What period is calcium in? ### Assistant: Calcium is in period 4.
68
+ <s>### Human: What is calcium's atomic weight? ### Assistant: Calcium's atomic weight is 40.01.
69
+ <s>### Human: What is calcium's state at room temperature? ### Assistant: Calcium's state is solid at room temperature.
70
+ <s>### Human: How many protons does calcium have? ### Assistant: Calcium has 20 protons.
71
+ <s>### Human: How many neutrons does calcium usually have? ### Assistant: Calcium usually has 20 neutrons.
72
+ <s>### Human: How many electrons does calcium usually have? ### Assistant: Calcium usually has 20 electrons.
73
+ <s>### Human: What is calcium's symbol? ### Assistant: Calcium's symbol is C.
74
+ <s>### Human: Where is calcium most abundant? ### Assistant: Calcium, like many metals, is common in rocks where it forms a component of minerals. It is the third most common metal in Earth's crust.
75
+ <s>### Human: What column is calcium in? ### Assistant: Calcium is in column 2.
76
+ <s>### Human: What row is calcium in? ### Assistant: Calcium is in row 4.
77
+ <s>### Human: What is calcium's melting point? ### Assistant: Calcium's melting point is 842 degrees Celsius.
78
+ <s>### Human: What is calcium's boiling point? ### Assistant: Calcium's boiling point is 1,484 degrees Celsius.
79
+ <s>### Human: What is calcium's radius? ### Assistant: Calcium's radius is 194 picometers.
80
+ <s>### Human: What is unique about calcium? ### Assistant: Calcium is common in the human body and it is very important for many body functions.
81
+ <s>### Human: What is iron's atomic number? ### Assistant: Iron's atomic number is 26.
82
+ <s>### Human: What group is iron in? ### Assistant: Iron is in group 8.
83
+ <s>### Human: What period is iron in? ### Assistant: Iron is in period 4.
84
+ <s>### Human: What is iron's atomic weight? ### Assistant: Iron's atomic weight is 55.85.
85
+ <s>### Human: What is iron's state at room temperature? ### Assistant: Iron's state is solid at room temperature.
86
+ <s>### Human: How many protons does iron have? ### Assistant: Iron has 26 protons.
87
+ <s>### Human: How many neutrons does iron usually have? ### Assistant: Iron usually has 26 neutrons.
88
+ <s>### Human: How many electrons does iron usually have? ### Assistant: Iron usually has 26 electrons.
89
+ <s>### Human: What is iron's symbol? ### Assistant: Iron's symbol is Fe.
90
+ <s>### Human: Where is iron most abundant? ### Assistant: Iron, like many metals, is common in rocks where it forms a component of minerals. In Earth, it makes up most of the core.
91
+ <s>### Human: What column is iron in? ### Assistant: Iron is in column 8.
92
+ <s>### Human: What row is iron in? ### Assistant: Iron is in row 4.
93
+ <s>### Human: What is iron's melting point? ### Assistant: Iron's melting point is 1,538 degrees Celsius.
94
+ <s>### Human: What is iron's boiling point? ### Assistant: Iron's boiling point is 2,861 degrees Celsius.
95
+ <s>### Human: What is iron's radius? ### Assistant: Iron's radius is 156 picometers.
96
+ <s>### Human: What is unique about iron? ### Assistant: Iron is the last element that stars fuse in their cores before going supernova.
97
+ <s>### Human: What is silver's atomic number? ### Assistant: Silver's atomic number is 47.
98
+ <s>### Human: What group is silver in? ### Assistant: Silver is in group 11.
99
+ <s>### Human: What period is silver in? ### Assistant: Silver is in period 5.
100
+ <s>### Human: What is silver's atomic weight? ### Assistant: Silver's atomic weight is 107.87.
101
+ <s>### Human: What is silver's state at room temperature? ### Assistant: Silver's state is solid at room temperature.
102
+ <s>### Human: How many protons does silver have? ### Assistant: Silver has 47 protons.
103
+ <s>### Human: How many neutrons does silver usually have? ### Assistant: Silver usually has 47 neutrons.
104
+ <s>### Human: How many electrons does silver usually have? ### Assistant: Silver usually has 47 electrons.
105
+ <s>### Human: What is silver's symbol? ### Assistant: Silver's symbol is Ag.
106
+ <s>### Human: Where is silver most abundant? ### Assistant: Silver, like many metals, is common in rocks where it forms a component of minerals. On Earth, it is considered a precious metal.
107
+ <s>### Human: What column is silver in? ### Assistant: Silver is in column 11.
108
+ <s>### Human: What row is silver in? ### Assistant: Silver is in row 5.
109
+ <s>### Human: What is silver's melting point? ### Assistant: Silver's melting point is 961.78 degrees Celsius.
110
+ <s>### Human: What is silver's boiling point? ### Assistant: Silver's boiling point is 2,162 degrees Celsius.
111
+ <s>### Human: What is silver's radius? ### Assistant: Silver's radius is 165 picometers.
112
+ <s>### Human: What is unique about silver? ### Assistant: Silver has the highest electrical and thermal conductivity as well as reflectivity of any element.
113
+ <s>### Human: What is cesium's atomic number? ### Assistant: Cesium's atomic number is 55.
114
+ <s>### Human: What group is cesium in? ### Assistant: Cesium is in group 1.
115
+ <s>### Human: What period is cesium in? ### Assistant: Cesium is in period 6.
116
+ <s>### Human: What is cesium's atomic weight? ### Assistant: Cesium's atomic weight is 132.91.
117
+ <s>### Human: What is cesium's state at room temperature? ### Assistant: Cesium's state is solid at room temperature.
118
+ <s>### Human: How many protons does cesium have? ### Assistant: Cesium has 55 protons.
119
+ <s>### Human: How many neutrons does cesium usually have? ### Assistant: Cesium usually has 55 neutrons.
120
+ <s>### Human: How many electrons does cesium usually have? ### Assistant: Cesium usually has 55 electrons.
121
+ <s>### Human: What is cesium's symbol? ### Assistant: Cesium's symbol is Cs.
122
+ <s>### Human: Where is cesium most abundant? ### Assistant: Cesium, like many metals, is common in rocks where it forms a component of minerals. It is a major component of toxic waste.
123
+ <s>### Human: What column is cesium in? ### Assistant: Cesium is in column 1.
124
+ <s>### Human: What row is cesium in? ### Assistant: Cesium is in row 6.
125
+ <s>### Human: What is cesium's melting point? ### Assistant: Cesium's melting point is 28.4 degrees Celsius.
126
+ <s>### Human: What is cesium's boiling point? ### Assistant: Cesium's boiling point is 670 degrees Celsius.
127
+ <s>### Human: What is cesium's radius? ### Assistant: Cesium's radius is 265 picometers.
128
+ <s>### Human: What is unique about cesium? ### Assistant: Cesium is the last element that stars fuse in their cores before going supernova.
129
+ <s>### Human: What is Mercury? ### Assistant: Mercury is a silver colored metal that is liquid at room temperature. It has an atomic number of 80 on the periodic table. It has a melting point of -38.83 C (-37.89 F) and it is toxic to humans.
130
+ <s>### Human: What is mercury's atomic number? ### Assistant: The atomic number of mercury is 80
131
+ <s>### Human: What group is mercury in? ### Assistant: Mercury (Hg) is located in Group 12, also known as the zinc group, on the periodic table. This group is located in the d-block, specifically in Period 6. Other elements in Group 12 include zinc (Zn), cadmium (Cd), and copernicium (Cn). Mercury is the only liquid at room temperature among the elements in this group.
132
+ <s>### Human: What period is mercury in? ### Assistant: Mercury (Hg) is located in Period 6 of the periodic table. The periods in the periodic table represent the number of electron shells or energy levels that an element's atoms have. Since mercury is in Period 6, it means that its atoms have six electron shells or energy levels. Other elements in Period 6 include elements like lead (Pb), gold (Au), and polonium (Po).
133
+ <s>### Human: What is mercury's atomic weight? ### Assistant: The atomic weight of Mercury is approximately 200.59 atomic mass units.
134
+ <s>### Human: What is mercury's state at room temperature? ### Assistant: Mercury's state is liquid at room temperature. Its melting point is -38.83 C (-37.89 F) and boiling point is 357 C (674 F). That means it is liquid at room temperature of 20 C (68 F).
135
+ <s>### Human: How many protons does mercury have? ### Assistant: A mercury atom has 80 protons. That corresponds to its atomic number 80.
136
+ <s>### Human: How many neutrons does mercury usually have? ### Assistant: The number of neutrons in a mercury atom can vary depending on the isotope of mercury. The most common isotope of mercury, known as mercury-202 (Hg-202), has 80 protons and 122 neutrons. However, there are other isotopes of mercury that have different numbers of neutrons. For example, mercury-201 (Hg-201) has 80 protons and 121 neutrons, while mercury-200 (Hg-200) has 80 protons and 120 neutrons. These varying isotopes of mercury exist due to differences in the number of neutrons in the nucleus of the atom.
137
+ <s>### Human: How many electrons does mercury usually have? ### Assistant: A mercury atom has 80 electrons, which is the same as its protons and atomic number.
138
+ <s>### Human: What is mercury's symbol? ### Assistant: The chemical symbol for mercury is Hg, which comes from its Latin name "hydrargyrum," meaning "liquid silver."
139
+ <s>### Human: Where is mercury most abundant? ### Assistant: Mercury is a naturally occurring element, but it is relatively rare in Earth's crust. It is not abundant in any specific region or country. However, mercury can be found in small amounts throughout the world, primarily in cinnabar ore deposits. The largest reserves of mercury are located in China, Kyrgyzstan, and Russia. It is also produced as a byproduct of mining and refining other metals, such as gold and silver. Additionally, mercury is released into the environment through human activities, such as coal burning and industrial processes.
140
+ <s>### Human: What column is mercury in? ### Assistant: Mercury (Hg) is located in Column 12 of the periodic table. This column is known as Group 12 or the zinc group. Elements in this column share similar chemical properties, as they have the same number of valence electrons. Other elements in Group 12 include zinc (Zn), cadmium (Cd), and copernicium (Cn).
141
+ <s>### Human: What row is mercury in? ### Assistant: Mercury (Hg) is located in Row 6 of the periodic table. The rows, or periods, in the periodic table represent the number of electron shells or energy levels that an element's atoms have. Since mercury is in Row 6, it means that its atoms have six electron shells or energy levels. Other elements in Row 6 include elements like lead (Pb), gold (Au), and polonium (Po).
142
+ <s>### Human: What is mercury's melting point? ### Assistant: Mercury's melting point is -38.83 degrees Celsius or -37.89 degrees Fahrenheit
143
+ <s>### Human: What is mercury's boiling point? ### Assistant: Mercury's boiling point is 357 degrees Celsius or 674 degrees Fahrenheit
144
+ <s>### Human: What is mercury's radius? ### Assistant: The atomic radius of mercury (Hg) depends on the reference point used. However, as an estimate, the atomic radius of mercury is typically reported to be around 150 picometers (pm) or 1.5 angstroms (Å). It's worth noting that atomic radii can vary slightly depending on the specific measurement method or the way it is defined in different contexts.
145
+ <s>### Human: Is all metal solid at room temperature? ### Assistant: No. Mercury is liquid at room temperature as its melting point is -38.83 C (-37.89 F) and boiling point is 357 C (674 F).
146
+ <s>### Human: Is Mercury the only Liquid Metal at room temperature? ### Assistant: No, mercury is not the only liquid metal at room temperature. There are several other metals that are also in liquid state at or around room temperature. Some examples include gallium, cesium, and francium. It is worth noting that these metals have very low melting points, which allows them to be liquid at typical room temperatures.
147
+ <s>### Human: What is unique about mercury? ### Assistant: Mercury has several unique properties. It is a good conductor of electricity and is one of the few metals that are liquid at room temperature. It has a melting point of -38.83 C (or -37.89 F), which is below room temperature. It also has a high density, which is about 13.5 times denser than water.
148
+ <s>### Human: Is mercury a metal? ### Assistant: Yes, mercury is a heavy, silvery-white metal. It is the only metal that exists as a liquid at room temperature.
149
+ <s>### Human: What are some common uses of mercury? ### Assistant: Mercury has various applications, including its use in thermometers, barometers, electrical switches, dental fillings, and fluorescent lights. It has also been used historically in industries such as gold mining and as an ingredient in certain pharmaceutical products.
150
+ <s>### Human: Is mercury toxic? ### Assistant: Yes, mercury is toxic to humans and animals. Exposure to high levels of mercury can have harmful effects on the nervous system, kidneys, and other organs. It is important to handle and dispose of mercury safely to prevent environmental contamination and health hazards.
151
+ <s>### Human: How does mercury behave differently from other metals? ### Assistant: One unique property of mercury is its low melting point (-38.83 degrees Celsius or -37.89 degrees Fahrenheit) and boiling point (357 degrees Celsius or 674 degrees Fahrenheit). This makes it the only metal that is liquid at room temperature. Mercury also has high surface tension, allowing it to form droplets and easily separate from other materials.
152
+ <s>### Human: Where is mercury found in nature? ### Assistant: Mercury is found in small quantities throughout the Earth's crust. It is primarily obtained by mining cinnabar ore, which is the most common source of mercury. It can also be found in trace amounts in certain minerals and fossil fuels.
153
+ <s>### Human: Is mercury still used in thermometers? ### Assistant: Mercury thermometers have been phased out in many countries due to environmental concerns. Digital thermometers and non-mercury alternatives, such as alcohol-based or digital thermometers, are typically used instead.
154
+ <s>### Human: How does mercury react with other substances? ### Assistant: Mercury does not react with most acids, alkalis, or common gases at room temperature. However, it can form compounds with certain elements, such as sulfur, oxygen, and halogens, under specific conditions.
155
+ <s>### Human: Is there more than one form of mercury? ### Assistant: Yes, there are several forms or phases of mercury. The most common form is elemental or metallic mercury, which is a liquid at room temperature. Another form is mercury vapor, which is a gas that can be produced by heating or evaporation. In addition, there are various mercury compounds with distinct chemical properties.
156
+ <s>### Human: How is mercury measured? ### Assistant: The measurement of mercury is typically done using different units. Common units include milligrams per kilogram (mg/kg) for environmental samples, parts per billion (ppb) or parts per million (ppm) for air and water samples, and micrograms per liter (µg/L) for blood or urine samples.
157
+ <s>### Human: What are the environmental concerns associated with mercury? ### Assistant: Mercury is a significant environmental pollutant, primarily due to its release from industrial processes, coal burning, and improper disposal of mercury-containing products. It can accumulate in ecosystems, leading to contamination of water, air, soil, and the food chain. This can have harmful effects on wildlife and humans.
158
+ <s>### Human: How is mercury disposed of properly? ### Assistant: Proper disposal of mercury is crucial to prevent environmental contamination. It should not be thrown in the trash. Instead, contact your local hazardous waste facility or follow specific guidelines set by your region for the safe collection and disposal of mercury-containing products.
159
+ <s>### Human: Are there any natural sources of elemental mercury? ### Assistant: Yes, small amounts of elemental mercury can be released naturally into the environment through volcanic activity, weathering of rocks, and the breakdown of organic matter. However, human activities are the primary source of elevated mercury levels in the environment.
160
+ <s>### Human: Where does the name Mercury come from? ### Assistant: The element was named after the Roman god Mercury, known for his speed and agility.
161
+ <s>### Human: Does Mercury rust when exposed to oxygen in the air? ### Assistant: Mercury, as a liquid metal, does not naturally combine with oxygen in the same way as other elements. Under normal conditions, mercury does not readily react with oxygen in the atmosphere.
162
+ <s>### Human: Where is Mercury used in household items? ### Assistant: It is used in older thermometers, fluorescent light bulbs and some electrical switches.
163
+ <s>### Human: Why is it dangerous to break a mercury thermostat? ### Assistant: Mercury is highly toxic to humans. With a melting point of -38.83 C (-37.89 F), it is liquid in room temperature and can easily spread. When dropped, elemental mercury breaks into smaller droplets which can go through small cracks or become strongly attached to certain materials.
164
+ <s>### Human: Can Mercury exist in gas form at room temperature? ### Assistant: While Mercury has a melting point of -38.83 C (-37.89 F) and a boiling point of 357 C (674 F), it can indeed exist as vapor gas in room tempature. At room temperature, exposed elemental mercury can evaporate to become an invisible, odorless toxic vapor. If heated, it is a colorless, odorless gas.
165
+ <s>### Human: Could Mercury pollute the air? ### Assistant: Yes, the burning of coal, oil and wood as fuel can cause mercury to become airborne, as can burning wastes that contain mercury.
166
+ <s>### Human: How does Mercury in the air pollute the ground? ### Assistant: This airborne mercury can fall to the ground in raindrops, in dust, or simply due to gravity (known as “air deposition”). The amount of mercury deposited in a given area depends on how much mercury is released from local, regional, national, and international sources.
167
+ <s>### Human: In the United States, what is the greatest source of Mercury pollution? ### Assistant: In the United States, power plants that burn coal to create electricity are the largest source of emissions; they account for about 44 percent of all manmade mercury emissions
168
+ <s>### Human: Is Mercury salt used in everyday consumer products? ### Assistant: Yes, Mercuric chloride is used in photography and as a topical antiseptic and disinfectant, wood preservative, and fungicide.
169
+ <s>### Human: Is Mercury salt used in medical products? ### Assistant: In the past, mercurous chloride was widely used in medicinal products, including laxatives, worming medications, and teething powders. It has since been replaced by safer and more effective agents.
170
+ <s>### Human: Does vaccines contain Mercury? ### Assistant: Sometimes. Thimerosal is a compound that contains mercury. Because it prevents the growth of dangerous microbes, thimerosal is used as a preservative in multi-dose vials of flu vaccines, and in two other childhood vaccines, it is used in the manufacturing process.
171
+ <s>### Human: Which occupations have high risk of Mercury exposure? ### Assistant: Occupations with higher risk of exposure to mercury and its salts include mining, electrical equipment manufacturing, and chemical and metal processing in which mercury is used.
172
+ <s>### Human: Is there an organic form of Mercury? ### Assistant: Yes, Methylmercury is the most common organic mercury compound found in the environment, and is highly toxic.
173
+ <s>### Human: can I freeze mercury solid? ### Assistant: Yes. With a melting point of -38.83 C (-37.89 F), you can freeze Mercury solid with dry ice.
174
+ <s>### Human: What is the freezing point of mercury? ### Assistant: The same as its melting point of -38.83 degrees Celsius or -37.89 degrees Fahrenheit
175
+ <s>### Human: How is Mercury toxic? ### Assistant: Mercury is a neurotoxin. It damages the neural system, especially in young chidlren. Mercury exposure at high levels can harm the brain, heart, kidneys, lungs, and immune system of people of all ages.
176
+ <s>### Human: How does Mercury get into human bodies? ### Assistant: While Mercury has a melting point of -38.83 C (-37.89 F), it can vaporize in room temperature. Metallic mercury mainly causes health effects when inhaled as a vapor where it can be absorbed through the lungs.
177
+ <s>### Human: How do you detect Mercury poisoning? ### Assistant: Mercury can be detected through a blood test.
178
+ <s>### Human: Can I be exposed to Mercury from house paint? ### Assistant: Yes, the US EPA permits interior latex paint to contain less than or equal to 300 ppm elemental mercury and exterior latex paint to contain less than or equal to 2000 ppm. However, neither the presence nor the concentration of mercury in the paint is required to be labeled on the paint can.